A Social Influence Approach for Group User Modeling in Group Recommendation Systems
While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender sys...
Gespeichert in:
Veröffentlicht in: | IEEE intelligent systems 2017-06, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE intelligent systems |
container_volume | |
creator | Guo, Junpeng Zhu, Yanlin Li, Aiai Wang, Qipeng Han, Weiguo |
description | While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender systems, the most significant one is social factors of group users. Social factors, including personality, expertise factor, interpersonal relationships, and preference similarities, widen the gap between group and individual recommendations. Here, a new approach focusing on the impact of social factors on group recommender systems is proposed. A computational model integrating the influences of personality, expertise factor, interpersonal relationships, and preference similarities is described in detail. Comparative experiments are conducted on two datasets. The experimental results show that the proposed approach can provide more accurate and satisfactory group recommendations, especially when social influences are significant. |
doi_str_mv | 10.1109/MIS.2017.2581329 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7944514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7944514</ieee_id><sourcerecordid>10_1109_MIS_2017_2581329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c614-68acdaa5c0eddf8936a477b07feca35b1fae5e67976bea3b27b9e791d02c660e3</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd3wUv-gc58SZo0xzF0G2wIdp5Lmn7RStuUZDvsv3djw9N7PN57hx8hz8BmAMy8btfljDPQM54XILi5IRMwEjLgRt6efH72SvN78pDSL2NcMCgmpJzTMrjWdnQ9-O6Ag0M6H8cYrPuhPkS6jOEw0q-EkW5Dg107fNN2uMaf6ELf49DYfRsGWh7THvv0SO687RI-XXVKdu9vu8Uq23ws14v5JnMKZKYK6xprc8ewaXxhhLJS65ppj86KvAZvMUeljVY1WlFzXRvUBhrGnVIMxZSwy62LIaWIvhpj29t4rIBVZybViUl1ZlJdmZwmL5dJi4j_dW2kzEGKPza8XnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Social Influence Approach for Group User Modeling in Group Recommendation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Junpeng ; Zhu, Yanlin ; Li, Aiai ; Wang, Qipeng ; Han, Weiguo</creator><creatorcontrib>Guo, Junpeng ; Zhu, Yanlin ; Li, Aiai ; Wang, Qipeng ; Han, Weiguo</creatorcontrib><description>While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender systems, the most significant one is social factors of group users. Social factors, including personality, expertise factor, interpersonal relationships, and preference similarities, widen the gap between group and individual recommendations. Here, a new approach focusing on the impact of social factors on group recommender systems is proposed. A computational model integrating the influences of personality, expertise factor, interpersonal relationships, and preference similarities is described in detail. Comparative experiments are conducted on two datasets. The experimental results show that the proposed approach can provide more accurate and satisfactory group recommendations, especially when social influences are significant.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2017.2581329</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Focusing ; H Information Technology and Systems ; H.5 Information Interfaces and Representation (HCI) ; H.5.3 Group and Organization Interfaces ; H.5.3.b Collaborative computing ; Intelligent systems ; J Computer Applications ; J.4 Social and Behavioral Sciences ; Object recognition ; Recommender systems ; Social factors ; Social recommendation</subject><ispartof>IEEE intelligent systems, 2017-06, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7944514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7944514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Junpeng</creatorcontrib><creatorcontrib>Zhu, Yanlin</creatorcontrib><creatorcontrib>Li, Aiai</creatorcontrib><creatorcontrib>Wang, Qipeng</creatorcontrib><creatorcontrib>Han, Weiguo</creatorcontrib><title>A Social Influence Approach for Group User Modeling in Group Recommendation Systems</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender systems, the most significant one is social factors of group users. Social factors, including personality, expertise factor, interpersonal relationships, and preference similarities, widen the gap between group and individual recommendations. Here, a new approach focusing on the impact of social factors on group recommender systems is proposed. A computational model integrating the influences of personality, expertise factor, interpersonal relationships, and preference similarities is described in detail. Comparative experiments are conducted on two datasets. The experimental results show that the proposed approach can provide more accurate and satisfactory group recommendations, especially when social influences are significant.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Focusing</subject><subject>H Information Technology and Systems</subject><subject>H.5 Information Interfaces and Representation (HCI)</subject><subject>H.5.3 Group and Organization Interfaces</subject><subject>H.5.3.b Collaborative computing</subject><subject>Intelligent systems</subject><subject>J Computer Applications</subject><subject>J.4 Social and Behavioral Sciences</subject><subject>Object recognition</subject><subject>Recommender systems</subject><subject>Social factors</subject><subject>Social recommendation</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAYxYMoOKd3wUv-gc58SZo0xzF0G2wIdp5Lmn7RStuUZDvsv3djw9N7PN57hx8hz8BmAMy8btfljDPQM54XILi5IRMwEjLgRt6efH72SvN78pDSL2NcMCgmpJzTMrjWdnQ9-O6Ag0M6H8cYrPuhPkS6jOEw0q-EkW5Dg107fNN2uMaf6ELf49DYfRsGWh7THvv0SO687RI-XXVKdu9vu8Uq23ws14v5JnMKZKYK6xprc8ewaXxhhLJS65ppj86KvAZvMUeljVY1WlFzXRvUBhrGnVIMxZSwy62LIaWIvhpj29t4rIBVZybViUl1ZlJdmZwmL5dJi4j_dW2kzEGKPza8XnI</recordid><startdate>20170608</startdate><enddate>20170608</enddate><creator>Guo, Junpeng</creator><creator>Zhu, Yanlin</creator><creator>Li, Aiai</creator><creator>Wang, Qipeng</creator><creator>Han, Weiguo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170608</creationdate><title>A Social Influence Approach for Group User Modeling in Group Recommendation Systems</title><author>Guo, Junpeng ; Zhu, Yanlin ; Li, Aiai ; Wang, Qipeng ; Han, Weiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c614-68acdaa5c0eddf8936a477b07feca35b1fae5e67976bea3b27b9e791d02c660e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Focusing</topic><topic>H Information Technology and Systems</topic><topic>H.5 Information Interfaces and Representation (HCI)</topic><topic>H.5.3 Group and Organization Interfaces</topic><topic>H.5.3.b Collaborative computing</topic><topic>Intelligent systems</topic><topic>J Computer Applications</topic><topic>J.4 Social and Behavioral Sciences</topic><topic>Object recognition</topic><topic>Recommender systems</topic><topic>Social factors</topic><topic>Social recommendation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Junpeng</creatorcontrib><creatorcontrib>Zhu, Yanlin</creatorcontrib><creatorcontrib>Li, Aiai</creatorcontrib><creatorcontrib>Wang, Qipeng</creatorcontrib><creatorcontrib>Han, Weiguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Junpeng</au><au>Zhu, Yanlin</au><au>Li, Aiai</au><au>Wang, Qipeng</au><au>Han, Weiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Social Influence Approach for Group User Modeling in Group Recommendation Systems</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2017-06-08</date><risdate>2017</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender systems, the most significant one is social factors of group users. Social factors, including personality, expertise factor, interpersonal relationships, and preference similarities, widen the gap between group and individual recommendations. Here, a new approach focusing on the impact of social factors on group recommender systems is proposed. A computational model integrating the influences of personality, expertise factor, interpersonal relationships, and preference similarities is described in detail. Comparative experiments are conducted on two datasets. The experimental results show that the proposed approach can provide more accurate and satisfactory group recommendations, especially when social influences are significant.</abstract><pub>IEEE</pub><doi>10.1109/MIS.2017.2581329</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1541-1672 |
ispartof | IEEE intelligent systems, 2017-06, p.1-1 |
issn | 1541-1672 1941-1294 |
language | eng |
recordid | cdi_ieee_primary_7944514 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Computational modeling Focusing H Information Technology and Systems H.5 Information Interfaces and Representation (HCI) H.5.3 Group and Organization Interfaces H.5.3.b Collaborative computing Intelligent systems J Computer Applications J.4 Social and Behavioral Sciences Object recognition Recommender systems Social factors Social recommendation |
title | A Social Influence Approach for Group User Modeling in Group Recommendation Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Social%20Influence%20Approach%20for%20Group%20User%20Modeling%20in%20Group%20Recommendation%20Systems&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Guo,%20Junpeng&rft.date=2017-06-08&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2017.2581329&rft_dat=%3Ccrossref_RIE%3E10_1109_MIS_2017_2581329%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7944514&rfr_iscdi=true |