A Social Influence Approach for Group User Modeling in Group Recommendation Systems

While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE intelligent systems 2017-06, p.1-1
Hauptverfasser: Guo, Junpeng, Zhu, Yanlin, Li, Aiai, Wang, Qipeng, Han, Weiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE intelligent systems
container_volume
creator Guo, Junpeng
Zhu, Yanlin
Li, Aiai
Wang, Qipeng
Han, Weiguo
description While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender systems, the most significant one is social factors of group users. Social factors, including personality, expertise factor, interpersonal relationships, and preference similarities, widen the gap between group and individual recommendations. Here, a new approach focusing on the impact of social factors on group recommender systems is proposed. A computational model integrating the influences of personality, expertise factor, interpersonal relationships, and preference similarities is described in detail. Comparative experiments are conducted on two datasets. The experimental results show that the proposed approach can provide more accurate and satisfactory group recommendations, especially when social influences are significant.
doi_str_mv 10.1109/MIS.2017.2581329
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7944514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7944514</ieee_id><sourcerecordid>10_1109_MIS_2017_2581329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c614-68acdaa5c0eddf8936a477b07feca35b1fae5e67976bea3b27b9e791d02c660e3</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd3wUv-gc58SZo0xzF0G2wIdp5Lmn7RStuUZDvsv3djw9N7PN57hx8hz8BmAMy8btfljDPQM54XILi5IRMwEjLgRt6efH72SvN78pDSL2NcMCgmpJzTMrjWdnQ9-O6Ag0M6H8cYrPuhPkS6jOEw0q-EkW5Dg107fNN2uMaf6ELf49DYfRsGWh7THvv0SO687RI-XXVKdu9vu8Uq23ws14v5JnMKZKYK6xprc8ewaXxhhLJS65ppj86KvAZvMUeljVY1WlFzXRvUBhrGnVIMxZSwy62LIaWIvhpj29t4rIBVZybViUl1ZlJdmZwmL5dJi4j_dW2kzEGKPza8XnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Social Influence Approach for Group User Modeling in Group Recommendation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Junpeng ; Zhu, Yanlin ; Li, Aiai ; Wang, Qipeng ; Han, Weiguo</creator><creatorcontrib>Guo, Junpeng ; Zhu, Yanlin ; Li, Aiai ; Wang, Qipeng ; Han, Weiguo</creatorcontrib><description>While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender systems, the most significant one is social factors of group users. Social factors, including personality, expertise factor, interpersonal relationships, and preference similarities, widen the gap between group and individual recommendations. Here, a new approach focusing on the impact of social factors on group recommender systems is proposed. A computational model integrating the influences of personality, expertise factor, interpersonal relationships, and preference similarities is described in detail. Comparative experiments are conducted on two datasets. The experimental results show that the proposed approach can provide more accurate and satisfactory group recommendations, especially when social influences are significant.</description><identifier>ISSN: 1541-1672</identifier><identifier>EISSN: 1941-1294</identifier><identifier>DOI: 10.1109/MIS.2017.2581329</identifier><identifier>CODEN: IISYF7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Focusing ; H Information Technology and Systems ; H.5 Information Interfaces and Representation (HCI) ; H.5.3 Group and Organization Interfaces ; H.5.3.b Collaborative computing ; Intelligent systems ; J Computer Applications ; J.4 Social and Behavioral Sciences ; Object recognition ; Recommender systems ; Social factors ; Social recommendation</subject><ispartof>IEEE intelligent systems, 2017-06, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7944514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7944514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Junpeng</creatorcontrib><creatorcontrib>Zhu, Yanlin</creatorcontrib><creatorcontrib>Li, Aiai</creatorcontrib><creatorcontrib>Wang, Qipeng</creatorcontrib><creatorcontrib>Han, Weiguo</creatorcontrib><title>A Social Influence Approach for Group User Modeling in Group Recommendation Systems</title><title>IEEE intelligent systems</title><addtitle>MIS</addtitle><description>While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender systems, the most significant one is social factors of group users. Social factors, including personality, expertise factor, interpersonal relationships, and preference similarities, widen the gap between group and individual recommendations. Here, a new approach focusing on the impact of social factors on group recommender systems is proposed. A computational model integrating the influences of personality, expertise factor, interpersonal relationships, and preference similarities is described in detail. Comparative experiments are conducted on two datasets. The experimental results show that the proposed approach can provide more accurate and satisfactory group recommendations, especially when social influences are significant.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Focusing</subject><subject>H Information Technology and Systems</subject><subject>H.5 Information Interfaces and Representation (HCI)</subject><subject>H.5.3 Group and Organization Interfaces</subject><subject>H.5.3.b Collaborative computing</subject><subject>Intelligent systems</subject><subject>J Computer Applications</subject><subject>J.4 Social and Behavioral Sciences</subject><subject>Object recognition</subject><subject>Recommender systems</subject><subject>Social factors</subject><subject>Social recommendation</subject><issn>1541-1672</issn><issn>1941-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAYxYMoOKd3wUv-gc58SZo0xzF0G2wIdp5Lmn7RStuUZDvsv3djw9N7PN57hx8hz8BmAMy8btfljDPQM54XILi5IRMwEjLgRt6efH72SvN78pDSL2NcMCgmpJzTMrjWdnQ9-O6Ag0M6H8cYrPuhPkS6jOEw0q-EkW5Dg107fNN2uMaf6ELf49DYfRsGWh7THvv0SO687RI-XXVKdu9vu8Uq23ws14v5JnMKZKYK6xprc8ewaXxhhLJS65ppj86KvAZvMUeljVY1WlFzXRvUBhrGnVIMxZSwy62LIaWIvhpj29t4rIBVZybViUl1ZlJdmZwmL5dJi4j_dW2kzEGKPza8XnI</recordid><startdate>20170608</startdate><enddate>20170608</enddate><creator>Guo, Junpeng</creator><creator>Zhu, Yanlin</creator><creator>Li, Aiai</creator><creator>Wang, Qipeng</creator><creator>Han, Weiguo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170608</creationdate><title>A Social Influence Approach for Group User Modeling in Group Recommendation Systems</title><author>Guo, Junpeng ; Zhu, Yanlin ; Li, Aiai ; Wang, Qipeng ; Han, Weiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c614-68acdaa5c0eddf8936a477b07feca35b1fae5e67976bea3b27b9e791d02c660e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Focusing</topic><topic>H Information Technology and Systems</topic><topic>H.5 Information Interfaces and Representation (HCI)</topic><topic>H.5.3 Group and Organization Interfaces</topic><topic>H.5.3.b Collaborative computing</topic><topic>Intelligent systems</topic><topic>J Computer Applications</topic><topic>J.4 Social and Behavioral Sciences</topic><topic>Object recognition</topic><topic>Recommender systems</topic><topic>Social factors</topic><topic>Social recommendation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Junpeng</creatorcontrib><creatorcontrib>Zhu, Yanlin</creatorcontrib><creatorcontrib>Li, Aiai</creatorcontrib><creatorcontrib>Wang, Qipeng</creatorcontrib><creatorcontrib>Han, Weiguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Junpeng</au><au>Zhu, Yanlin</au><au>Li, Aiai</au><au>Wang, Qipeng</au><au>Han, Weiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Social Influence Approach for Group User Modeling in Group Recommendation Systems</atitle><jtitle>IEEE intelligent systems</jtitle><stitle>MIS</stitle><date>2017-06-08</date><risdate>2017</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1541-1672</issn><eissn>1941-1294</eissn><coden>IISYF7</coden><abstract>While many studies on typical recommender systems focus on making recommendations to individual users, many social activities involve groups of users. Issues related to group recommendations are increasingly becoming hot research topics. Among differences between individual and group recommender systems, the most significant one is social factors of group users. Social factors, including personality, expertise factor, interpersonal relationships, and preference similarities, widen the gap between group and individual recommendations. Here, a new approach focusing on the impact of social factors on group recommender systems is proposed. A computational model integrating the influences of personality, expertise factor, interpersonal relationships, and preference similarities is described in detail. Comparative experiments are conducted on two datasets. The experimental results show that the proposed approach can provide more accurate and satisfactory group recommendations, especially when social influences are significant.</abstract><pub>IEEE</pub><doi>10.1109/MIS.2017.2581329</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-1672
ispartof IEEE intelligent systems, 2017-06, p.1-1
issn 1541-1672
1941-1294
language eng
recordid cdi_ieee_primary_7944514
source IEEE Electronic Library (IEL)
subjects Analytical models
Computational modeling
Focusing
H Information Technology and Systems
H.5 Information Interfaces and Representation (HCI)
H.5.3 Group and Organization Interfaces
H.5.3.b Collaborative computing
Intelligent systems
J Computer Applications
J.4 Social and Behavioral Sciences
Object recognition
Recommender systems
Social factors
Social recommendation
title A Social Influence Approach for Group User Modeling in Group Recommendation Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A15%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Social%20Influence%20Approach%20for%20Group%20User%20Modeling%20in%20Group%20Recommendation%20Systems&rft.jtitle=IEEE%20intelligent%20systems&rft.au=Guo,%20Junpeng&rft.date=2017-06-08&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1541-1672&rft.eissn=1941-1294&rft.coden=IISYF7&rft_id=info:doi/10.1109/MIS.2017.2581329&rft_dat=%3Ccrossref_RIE%3E10_1109_MIS_2017_2581329%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7944514&rfr_iscdi=true