The Kalman Decomposition for Linear Quantum Systems
This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2018-02, Vol.63 (2), p.331-346 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 2 |
container_start_page | 331 |
container_title | IEEE transactions on automatic control |
container_volume | 63 |
creator | Zhang, Guofeng Grivopoulos, Symeon Petersen, Ian R. Gough, John E. |
description | This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples. |
doi_str_mv | 10.1109/TAC.2017.2713343 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7942122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7942122</ieee_id><sourcerecordid>10_1109_TAC_2017_2713343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-56905c0fd8223da866b17c99f1cd197ac27bdb7e589064425a94f0728d1e353c3</originalsourceid><addsrcrecordid>eNo9j01LxDAYhIMoWFfvgpf8gda8SfN1XKquYkHEeg5pmmBl2y5J97D_3i67eBoGZoZ5ELoHUgAQ_disq4ISkAWVwFjJLlAGnKuccsouUUYIqFxTJa7RTUq_ixVlCRlizY_H73Y72BE_eTcNuyn1cz-NOEwR1_3obcSfezvO-wF_HdLsh3SLroLdJn931hX6fnluqte8_ti8Ves6d1SwOedCE-5I6BSlrLNKiBak0zqA60BL66hsu1Z6rjRZzlBudRmIpKoDzzhzbIXIadfFKaXog9nFfrDxYICYI7RZoM0R2pyhl8rDqdJ77__jUpcUlhN__oxRkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Kalman Decomposition for Linear Quantum Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Guofeng ; Grivopoulos, Symeon ; Petersen, Ian R. ; Gough, John E.</creator><creatorcontrib>Zhang, Guofeng ; Grivopoulos, Symeon ; Petersen, Ian R. ; Gough, John E.</creatorcontrib><description>This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2713343</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Controllability ; Electronic mail ; kalman decomposition ; Kalman filters ; linear quantum systems ; Linear systems ; Observability ; Quantum computing ; Quantum mechanics</subject><ispartof>IEEE transactions on automatic control, 2018-02, Vol.63 (2), p.331-346</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-56905c0fd8223da866b17c99f1cd197ac27bdb7e589064425a94f0728d1e353c3</citedby><cites>FETCH-LOGICAL-c263t-56905c0fd8223da866b17c99f1cd197ac27bdb7e589064425a94f0728d1e353c3</cites><orcidid>0000-0001-5854-5247 ; 0000-0003-4856-9450 ; 0000-0002-1374-328X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7942122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7942122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>Grivopoulos, Symeon</creatorcontrib><creatorcontrib>Petersen, Ian R.</creatorcontrib><creatorcontrib>Gough, John E.</creatorcontrib><title>The Kalman Decomposition for Linear Quantum Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples.</description><subject>Controllability</subject><subject>Electronic mail</subject><subject>kalman decomposition</subject><subject>Kalman filters</subject><subject>linear quantum systems</subject><subject>Linear systems</subject><subject>Observability</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01LxDAYhIMoWFfvgpf8gda8SfN1XKquYkHEeg5pmmBl2y5J97D_3i67eBoGZoZ5ELoHUgAQ_disq4ISkAWVwFjJLlAGnKuccsouUUYIqFxTJa7RTUq_ixVlCRlizY_H73Y72BE_eTcNuyn1cz-NOEwR1_3obcSfezvO-wF_HdLsh3SLroLdJn931hX6fnluqte8_ti8Ves6d1SwOedCE-5I6BSlrLNKiBak0zqA60BL66hsu1Z6rjRZzlBudRmIpKoDzzhzbIXIadfFKaXog9nFfrDxYICYI7RZoM0R2pyhl8rDqdJ77__jUpcUlhN__oxRkg</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Zhang, Guofeng</creator><creator>Grivopoulos, Symeon</creator><creator>Petersen, Ian R.</creator><creator>Gough, John E.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5854-5247</orcidid><orcidid>https://orcid.org/0000-0003-4856-9450</orcidid><orcidid>https://orcid.org/0000-0002-1374-328X</orcidid></search><sort><creationdate>201802</creationdate><title>The Kalman Decomposition for Linear Quantum Systems</title><author>Zhang, Guofeng ; Grivopoulos, Symeon ; Petersen, Ian R. ; Gough, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-56905c0fd8223da866b17c99f1cd197ac27bdb7e589064425a94f0728d1e353c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Controllability</topic><topic>Electronic mail</topic><topic>kalman decomposition</topic><topic>Kalman filters</topic><topic>linear quantum systems</topic><topic>Linear systems</topic><topic>Observability</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>Grivopoulos, Symeon</creatorcontrib><creatorcontrib>Petersen, Ian R.</creatorcontrib><creatorcontrib>Gough, John E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Guofeng</au><au>Grivopoulos, Symeon</au><au>Petersen, Ian R.</au><au>Gough, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kalman Decomposition for Linear Quantum Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-02</date><risdate>2018</risdate><volume>63</volume><issue>2</issue><spage>331</spage><epage>346</epage><pages>331-346</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2713343</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5854-5247</orcidid><orcidid>https://orcid.org/0000-0003-4856-9450</orcidid><orcidid>https://orcid.org/0000-0002-1374-328X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2018-02, Vol.63 (2), p.331-346 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_7942122 |
source | IEEE Electronic Library (IEL) |
subjects | Controllability Electronic mail kalman decomposition Kalman filters linear quantum systems Linear systems Observability Quantum computing Quantum mechanics |
title | The Kalman Decomposition for Linear Quantum Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kalman%20Decomposition%20for%20Linear%20Quantum%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Zhang,%20Guofeng&rft.date=2018-02&rft.volume=63&rft.issue=2&rft.spage=331&rft.epage=346&rft.pages=331-346&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2713343&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2017_2713343%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7942122&rfr_iscdi=true |