The Kalman Decomposition for Linear Quantum Systems

This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2018-02, Vol.63 (2), p.331-346
Hauptverfasser: Zhang, Guofeng, Grivopoulos, Symeon, Petersen, Ian R., Gough, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 2
container_start_page 331
container_title IEEE transactions on automatic control
container_volume 63
creator Zhang, Guofeng
Grivopoulos, Symeon
Petersen, Ian R.
Gough, John E.
description This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples.
doi_str_mv 10.1109/TAC.2017.2713343
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7942122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7942122</ieee_id><sourcerecordid>10_1109_TAC_2017_2713343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-56905c0fd8223da866b17c99f1cd197ac27bdb7e589064425a94f0728d1e353c3</originalsourceid><addsrcrecordid>eNo9j01LxDAYhIMoWFfvgpf8gda8SfN1XKquYkHEeg5pmmBl2y5J97D_3i67eBoGZoZ5ELoHUgAQ_disq4ISkAWVwFjJLlAGnKuccsouUUYIqFxTJa7RTUq_ixVlCRlizY_H73Y72BE_eTcNuyn1cz-NOEwR1_3obcSfezvO-wF_HdLsh3SLroLdJn931hX6fnluqte8_ti8Ves6d1SwOedCE-5I6BSlrLNKiBak0zqA60BL66hsu1Z6rjRZzlBudRmIpKoDzzhzbIXIadfFKaXog9nFfrDxYICYI7RZoM0R2pyhl8rDqdJ77__jUpcUlhN__oxRkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Kalman Decomposition for Linear Quantum Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Guofeng ; Grivopoulos, Symeon ; Petersen, Ian R. ; Gough, John E.</creator><creatorcontrib>Zhang, Guofeng ; Grivopoulos, Symeon ; Petersen, Ian R. ; Gough, John E.</creatorcontrib><description>This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2713343</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Controllability ; Electronic mail ; kalman decomposition ; Kalman filters ; linear quantum systems ; Linear systems ; Observability ; Quantum computing ; Quantum mechanics</subject><ispartof>IEEE transactions on automatic control, 2018-02, Vol.63 (2), p.331-346</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-56905c0fd8223da866b17c99f1cd197ac27bdb7e589064425a94f0728d1e353c3</citedby><cites>FETCH-LOGICAL-c263t-56905c0fd8223da866b17c99f1cd197ac27bdb7e589064425a94f0728d1e353c3</cites><orcidid>0000-0001-5854-5247 ; 0000-0003-4856-9450 ; 0000-0002-1374-328X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7942122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7942122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>Grivopoulos, Symeon</creatorcontrib><creatorcontrib>Petersen, Ian R.</creatorcontrib><creatorcontrib>Gough, John E.</creatorcontrib><title>The Kalman Decomposition for Linear Quantum Systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples.</description><subject>Controllability</subject><subject>Electronic mail</subject><subject>kalman decomposition</subject><subject>Kalman filters</subject><subject>linear quantum systems</subject><subject>Linear systems</subject><subject>Observability</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j01LxDAYhIMoWFfvgpf8gda8SfN1XKquYkHEeg5pmmBl2y5J97D_3i67eBoGZoZ5ELoHUgAQ_disq4ISkAWVwFjJLlAGnKuccsouUUYIqFxTJa7RTUq_ixVlCRlizY_H73Y72BE_eTcNuyn1cz-NOEwR1_3obcSfezvO-wF_HdLsh3SLroLdJn931hX6fnluqte8_ti8Ves6d1SwOedCE-5I6BSlrLNKiBak0zqA60BL66hsu1Z6rjRZzlBudRmIpKoDzzhzbIXIadfFKaXog9nFfrDxYICYI7RZoM0R2pyhl8rDqdJ77__jUpcUlhN__oxRkg</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Zhang, Guofeng</creator><creator>Grivopoulos, Symeon</creator><creator>Petersen, Ian R.</creator><creator>Gough, John E.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5854-5247</orcidid><orcidid>https://orcid.org/0000-0003-4856-9450</orcidid><orcidid>https://orcid.org/0000-0002-1374-328X</orcidid></search><sort><creationdate>201802</creationdate><title>The Kalman Decomposition for Linear Quantum Systems</title><author>Zhang, Guofeng ; Grivopoulos, Symeon ; Petersen, Ian R. ; Gough, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-56905c0fd8223da866b17c99f1cd197ac27bdb7e589064425a94f0728d1e353c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Controllability</topic><topic>Electronic mail</topic><topic>kalman decomposition</topic><topic>Kalman filters</topic><topic>linear quantum systems</topic><topic>Linear systems</topic><topic>Observability</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>Grivopoulos, Symeon</creatorcontrib><creatorcontrib>Petersen, Ian R.</creatorcontrib><creatorcontrib>Gough, John E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Guofeng</au><au>Grivopoulos, Symeon</au><au>Petersen, Ian R.</au><au>Gough, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Kalman Decomposition for Linear Quantum Systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2018-02</date><risdate>2018</risdate><volume>63</volume><issue>2</issue><spage>331</spage><epage>346</epage><pages>331-346</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>This paper studies the Kalman decomposition for linear quantum systems. Contrary to the classical case, the coordinate transformation used for the decomposition must belong to a specific class of transformations as a consequence of the laws of quantum mechanics. We propose a construction method for such transformations that put the system in a Kalman canonical form. Furthermore, we uncover an interesting structure for the obtained decomposition. In the case of passive systems, it is shown that there exist only controllable/observable and uncontrollable/unobservable subsystems. In the general case, controllable/unobservable and uncontrollable/observable subsystems may also be present, but their respective system variables must be conjugate variables of each other. This decomposition naturally exposes decoherence-free modes, quantum-nondemolition modes, quantum-mechanics-free subsystems, and back-action evasion measurements in the quantum system, which are useful resources for quantum information processing, and quantum measurements. The theory developed is applied to physical examples.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2713343</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5854-5247</orcidid><orcidid>https://orcid.org/0000-0003-4856-9450</orcidid><orcidid>https://orcid.org/0000-0002-1374-328X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2018-02, Vol.63 (2), p.331-346
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_7942122
source IEEE Electronic Library (IEL)
subjects Controllability
Electronic mail
kalman decomposition
Kalman filters
linear quantum systems
Linear systems
Observability
Quantum computing
Quantum mechanics
title The Kalman Decomposition for Linear Quantum Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Kalman%20Decomposition%20for%20Linear%20Quantum%20Systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Zhang,%20Guofeng&rft.date=2018-02&rft.volume=63&rft.issue=2&rft.spage=331&rft.epage=346&rft.pages=331-346&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2713343&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2017_2713343%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7942122&rfr_iscdi=true