Array Interpolation Using Covariance Matrix Completion of Minimum-Size Virtual Array

Sparse arrays increase aperture and resolution capability for direction-of-arrival estimation. Spatial smoothing step in coarray MUSIC algorithm prevents us from using the full coarray; so, there is a limitation for aperture N α and degrees of freedom that are determined by minimum redundancy arrays...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2017-07, Vol.24 (7), p.1063-1067
Hauptverfasser: Hosseini, Seyed MohammadReza, Sebt, Mohammad Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1067
container_issue 7
container_start_page 1063
container_title IEEE signal processing letters
container_volume 24
creator Hosseini, Seyed MohammadReza
Sebt, Mohammad Ali
description Sparse arrays increase aperture and resolution capability for direction-of-arrival estimation. Spatial smoothing step in coarray MUSIC algorithm prevents us from using the full coarray; so, there is a limitation for aperture N α and degrees of freedom that are determined by minimum redundancy arrays. Interpolation methods can reduce this limitation and make it possible to use the full coarray of partially augmentable arrays. In interpolation methods based on matrix completion techniques, we should complete an N α × N α Toeplitz matrix. For this purpose, a semidefinite programming (SDP) with O(N α 6 ) complexity should be solved. In this letter, we introduce a set that contains arrays that have the equal aperture with original array and have filled coarray. By selecting the array that have minimum number of sensors in this set, we formulate a new structured matrix completion problem. Numerical examples indicate that the proposed structured matrix completion not only decreases the complexity of SDP problem but also, in many instances, increases the estimation accuracy and probability of resolution.
doi_str_mv 10.1109/LSP.2017.2708750
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7935534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7935534</ieee_id><sourcerecordid>10_1109_LSP_2017_2708750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-2a65cf15f5543bdc2adaabfe704d753622f47956f9ab0d25e7056ee96414f0b23</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVwR-LiP5CwtrN2fKwqHpVagdSWa-QkNjLKS06KKL-e9CFOs5qdmcNHyD2DmDHQj8v1e8yBqZgrSBXCBZkwxDTiQrLL8QYFkdaQXpObvv8CgJSlOCGbWQhmTxfNYEPXVmbwbUO3vW8-6bz9NsGbprB0ZYbgf0an7ip7jLSOrnzj610drf2vpR8-DDtT0ePcLblypurt3VmnZPv8tJm_Rsu3l8V8towKLsUQcSOxcAwdYiLysuCmNCZ3VkFSKhSSc5cojdJpk0PJcXygtFbLhCUOci6mBE67RWj7PliXdcHXJuwzBtmBSjZSyQ5UsjOVsfJwqnhr7X9caYEoEvEHd_BfBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Array Interpolation Using Covariance Matrix Completion of Minimum-Size Virtual Array</title><source>IEEE Electronic Library (IEL)</source><creator>Hosseini, Seyed MohammadReza ; Sebt, Mohammad Ali</creator><creatorcontrib>Hosseini, Seyed MohammadReza ; Sebt, Mohammad Ali</creatorcontrib><description>Sparse arrays increase aperture and resolution capability for direction-of-arrival estimation. Spatial smoothing step in coarray MUSIC algorithm prevents us from using the full coarray; so, there is a limitation for aperture N α and degrees of freedom that are determined by minimum redundancy arrays. Interpolation methods can reduce this limitation and make it possible to use the full coarray of partially augmentable arrays. In interpolation methods based on matrix completion techniques, we should complete an N α × N α Toeplitz matrix. For this purpose, a semidefinite programming (SDP) with O(N α 6 ) complexity should be solved. In this letter, we introduce a set that contains arrays that have the equal aperture with original array and have filled coarray. By selecting the array that have minimum number of sensors in this set, we formulate a new structured matrix completion problem. Numerical examples indicate that the proposed structured matrix completion not only decreases the complexity of SDP problem but also, in many instances, increases the estimation accuracy and probability of resolution.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2017.2708750</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>IEEE</publisher><subject>Apertures ; Array signal processing ; Covariance matrices ; Direction-of-arrival (DOA) ; Interpolation ; matrix completion ; Minimization ; Sensor arrays ; sparse arrays ; virtual array</subject><ispartof>IEEE signal processing letters, 2017-07, Vol.24 (7), p.1063-1067</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-2a65cf15f5543bdc2adaabfe704d753622f47956f9ab0d25e7056ee96414f0b23</citedby><cites>FETCH-LOGICAL-c263t-2a65cf15f5543bdc2adaabfe704d753622f47956f9ab0d25e7056ee96414f0b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7935534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7935534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hosseini, Seyed MohammadReza</creatorcontrib><creatorcontrib>Sebt, Mohammad Ali</creatorcontrib><title>Array Interpolation Using Covariance Matrix Completion of Minimum-Size Virtual Array</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>Sparse arrays increase aperture and resolution capability for direction-of-arrival estimation. Spatial smoothing step in coarray MUSIC algorithm prevents us from using the full coarray; so, there is a limitation for aperture N α and degrees of freedom that are determined by minimum redundancy arrays. Interpolation methods can reduce this limitation and make it possible to use the full coarray of partially augmentable arrays. In interpolation methods based on matrix completion techniques, we should complete an N α × N α Toeplitz matrix. For this purpose, a semidefinite programming (SDP) with O(N α 6 ) complexity should be solved. In this letter, we introduce a set that contains arrays that have the equal aperture with original array and have filled coarray. By selecting the array that have minimum number of sensors in this set, we formulate a new structured matrix completion problem. Numerical examples indicate that the proposed structured matrix completion not only decreases the complexity of SDP problem but also, in many instances, increases the estimation accuracy and probability of resolution.</description><subject>Apertures</subject><subject>Array signal processing</subject><subject>Covariance matrices</subject><subject>Direction-of-arrival (DOA)</subject><subject>Interpolation</subject><subject>matrix completion</subject><subject>Minimization</subject><subject>Sensor arrays</subject><subject>sparse arrays</subject><subject>virtual array</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqVwR-LiP5CwtrN2fKwqHpVagdSWa-QkNjLKS06KKL-e9CFOs5qdmcNHyD2DmDHQj8v1e8yBqZgrSBXCBZkwxDTiQrLL8QYFkdaQXpObvv8CgJSlOCGbWQhmTxfNYEPXVmbwbUO3vW8-6bz9NsGbprB0ZYbgf0an7ip7jLSOrnzj610drf2vpR8-DDtT0ePcLblypurt3VmnZPv8tJm_Rsu3l8V8towKLsUQcSOxcAwdYiLysuCmNCZ3VkFSKhSSc5cojdJpk0PJcXygtFbLhCUOci6mBE67RWj7PliXdcHXJuwzBtmBSjZSyQ5UsjOVsfJwqnhr7X9caYEoEvEHd_BfBg</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Hosseini, Seyed MohammadReza</creator><creator>Sebt, Mohammad Ali</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201707</creationdate><title>Array Interpolation Using Covariance Matrix Completion of Minimum-Size Virtual Array</title><author>Hosseini, Seyed MohammadReza ; Sebt, Mohammad Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-2a65cf15f5543bdc2adaabfe704d753622f47956f9ab0d25e7056ee96414f0b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Apertures</topic><topic>Array signal processing</topic><topic>Covariance matrices</topic><topic>Direction-of-arrival (DOA)</topic><topic>Interpolation</topic><topic>matrix completion</topic><topic>Minimization</topic><topic>Sensor arrays</topic><topic>sparse arrays</topic><topic>virtual array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, Seyed MohammadReza</creatorcontrib><creatorcontrib>Sebt, Mohammad Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hosseini, Seyed MohammadReza</au><au>Sebt, Mohammad Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Array Interpolation Using Covariance Matrix Completion of Minimum-Size Virtual Array</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2017-07</date><risdate>2017</risdate><volume>24</volume><issue>7</issue><spage>1063</spage><epage>1067</epage><pages>1063-1067</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>Sparse arrays increase aperture and resolution capability for direction-of-arrival estimation. Spatial smoothing step in coarray MUSIC algorithm prevents us from using the full coarray; so, there is a limitation for aperture N α and degrees of freedom that are determined by minimum redundancy arrays. Interpolation methods can reduce this limitation and make it possible to use the full coarray of partially augmentable arrays. In interpolation methods based on matrix completion techniques, we should complete an N α × N α Toeplitz matrix. For this purpose, a semidefinite programming (SDP) with O(N α 6 ) complexity should be solved. In this letter, we introduce a set that contains arrays that have the equal aperture with original array and have filled coarray. By selecting the array that have minimum number of sensors in this set, we formulate a new structured matrix completion problem. Numerical examples indicate that the proposed structured matrix completion not only decreases the complexity of SDP problem but also, in many instances, increases the estimation accuracy and probability of resolution.</abstract><pub>IEEE</pub><doi>10.1109/LSP.2017.2708750</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2017-07, Vol.24 (7), p.1063-1067
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_7935534
source IEEE Electronic Library (IEL)
subjects Apertures
Array signal processing
Covariance matrices
Direction-of-arrival (DOA)
Interpolation
matrix completion
Minimization
Sensor arrays
sparse arrays
virtual array
title Array Interpolation Using Covariance Matrix Completion of Minimum-Size Virtual Array
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A27%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Array%20Interpolation%20Using%20Covariance%20Matrix%20Completion%20of%20Minimum-Size%20Virtual%20Array&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Hosseini,%20Seyed%20MohammadReza&rft.date=2017-07&rft.volume=24&rft.issue=7&rft.spage=1063&rft.epage=1067&rft.pages=1063-1067&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2017.2708750&rft_dat=%3Ccrossref_RIE%3E10_1109_LSP_2017_2708750%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7935534&rfr_iscdi=true