Predicting Spike Trains from PMd to M1 Using Discrete Time Rescaling Targeted GLM

The computational model for spike train prediction with inputs from other related cerebral cortices is important in revealing the underlying connection among different cortical areas. To evaluate goodness-of-fit of the model, the time rescaling Kolmogorov-Smirnov (KS) statistic is usually applied, o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2018-06, Vol.10 (2), p.194-204
Hauptverfasser: Xing, Dong, Qian, Cunle, Li, Hongbao, Zhang, Shaomin, Zhang, Qiaosheng, Hao, Yaoyao, Zheng, Xiaoxiang, Wu, Zhaohui, Wang, Yiwen, Pan, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 2
container_start_page 194
container_title IEEE transactions on cognitive and developmental systems
container_volume 10
creator Xing, Dong
Qian, Cunle
Li, Hongbao
Zhang, Shaomin
Zhang, Qiaosheng
Hao, Yaoyao
Zheng, Xiaoxiang
Wu, Zhaohui
Wang, Yiwen
Pan, Gang
description The computational model for spike train prediction with inputs from other related cerebral cortices is important in revealing the underlying connection among different cortical areas. To evaluate goodness-of-fit of the model, the time rescaling Kolmogorov-Smirnov (KS) statistic is usually applied, of which the calculation is separated from optimization procedure of the model. If the KS statistic could be embedded into objective function of the optimization procedure, precision of the firing probability series generated by the model would be increased directly. This paper presents a linear-nonlinear-Poisson cascade framework for prediction of spike trains, whose objective function is changed from maximizing log-likelihood of the spike trains to minimizing the penalization of discrete time rescaling KS statistic to eliminate the separation between optimization and evaluation of the model. We apply our model on the task of predicting firing probability of neurons from primary motor cortex with spike trains from dorsal premotor cortex as input, which are two cerebral cortices associated with movements planning and executing. The experimental results show that by introducing the goodness-of-fit metric into the objective function, results of the model will gain a significant improvement, which outperforms the state of the art.
doi_str_mv 10.1109/TCDS.2017.2707466
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7933006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7933006</ieee_id><sourcerecordid>2299151698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-bc5e00b06c4aa05ddaa5d528a0475dae0325fbed6b6c06d684689f81b99c7c7e3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiUT5AcZLE8-L03a3H0cDiiYQUZZz0227pAgstsvBf-9uIJxm8uZ5Z5IHoQcCI0JAPZfjyXJEgYgRFSByzq_QgDKhMqmYur7sFG7RMKUNABDOhMzFAH0tonfBtmG_xstD-PG4jCbsE65js8OLucNtg-cEr1JPTEKy0bcdFHYef_tkzbbPSxPXXezwdDa_Rze12SY_PM87tHp7Lcfv2exz-jF-mWWWKtZmlS08QAXc5sZA4ZwxhSuoNJCLwhkPjBZ15R2vuAXuuMy5VLUklVJWWOHZHXo63T3E5vfoU6s3zTHuu5eaUqVIQbiSHUVOlI1NStHX-hDDzsQ_TUD38nQvT_fy9Fle13k8dYL3_sILxRgAZ_9ou2mM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299151698</pqid></control><display><type>article</type><title>Predicting Spike Trains from PMd to M1 Using Discrete Time Rescaling Targeted GLM</title><source>IEEE Electronic Library (IEL)</source><creator>Xing, Dong ; Qian, Cunle ; Li, Hongbao ; Zhang, Shaomin ; Zhang, Qiaosheng ; Hao, Yaoyao ; Zheng, Xiaoxiang ; Wu, Zhaohui ; Wang, Yiwen ; Pan, Gang</creator><creatorcontrib>Xing, Dong ; Qian, Cunle ; Li, Hongbao ; Zhang, Shaomin ; Zhang, Qiaosheng ; Hao, Yaoyao ; Zheng, Xiaoxiang ; Wu, Zhaohui ; Wang, Yiwen ; Pan, Gang</creatorcontrib><description>The computational model for spike train prediction with inputs from other related cerebral cortices is important in revealing the underlying connection among different cortical areas. To evaluate goodness-of-fit of the model, the time rescaling Kolmogorov-Smirnov (KS) statistic is usually applied, of which the calculation is separated from optimization procedure of the model. If the KS statistic could be embedded into objective function of the optimization procedure, precision of the firing probability series generated by the model would be increased directly. This paper presents a linear-nonlinear-Poisson cascade framework for prediction of spike trains, whose objective function is changed from maximizing log-likelihood of the spike trains to minimizing the penalization of discrete time rescaling KS statistic to eliminate the separation between optimization and evaluation of the model. We apply our model on the task of predicting firing probability of neurons from primary motor cortex with spike trains from dorsal premotor cortex as input, which are two cerebral cortices associated with movements planning and executing. The experimental results show that by introducing the goodness-of-fit metric into the objective function, results of the model will gain a significant improvement, which outperforms the state of the art.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2017.2707466</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Brain modeling ; Computational modeling ; Dorsal premotor cortex (PMd) ; Encoding ; generalized linear model (GLM) ; Goodness of fit ; Kolmogorov–Smirnov (KS) test ; Neurons ; numerical gradient descent ; Numerical models ; Optimization ; Predictions ; Predictive models ; primary motor cortex (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;M 1) ; Rescaling ; Spikes ; Statistical analysis</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2018-06, Vol.10 (2), p.194-204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-bc5e00b06c4aa05ddaa5d528a0475dae0325fbed6b6c06d684689f81b99c7c7e3</citedby><cites>FETCH-LOGICAL-c293t-bc5e00b06c4aa05ddaa5d528a0475dae0325fbed6b6c06d684689f81b99c7c7e3</cites><orcidid>0000-0001-7759-0406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7933006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7933006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xing, Dong</creatorcontrib><creatorcontrib>Qian, Cunle</creatorcontrib><creatorcontrib>Li, Hongbao</creatorcontrib><creatorcontrib>Zhang, Shaomin</creatorcontrib><creatorcontrib>Zhang, Qiaosheng</creatorcontrib><creatorcontrib>Hao, Yaoyao</creatorcontrib><creatorcontrib>Zheng, Xiaoxiang</creatorcontrib><creatorcontrib>Wu, Zhaohui</creatorcontrib><creatorcontrib>Wang, Yiwen</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><title>Predicting Spike Trains from PMd to M1 Using Discrete Time Rescaling Targeted GLM</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>The computational model for spike train prediction with inputs from other related cerebral cortices is important in revealing the underlying connection among different cortical areas. To evaluate goodness-of-fit of the model, the time rescaling Kolmogorov-Smirnov (KS) statistic is usually applied, of which the calculation is separated from optimization procedure of the model. If the KS statistic could be embedded into objective function of the optimization procedure, precision of the firing probability series generated by the model would be increased directly. This paper presents a linear-nonlinear-Poisson cascade framework for prediction of spike trains, whose objective function is changed from maximizing log-likelihood of the spike trains to minimizing the penalization of discrete time rescaling KS statistic to eliminate the separation between optimization and evaluation of the model. We apply our model on the task of predicting firing probability of neurons from primary motor cortex with spike trains from dorsal premotor cortex as input, which are two cerebral cortices associated with movements planning and executing. The experimental results show that by introducing the goodness-of-fit metric into the objective function, results of the model will gain a significant improvement, which outperforms the state of the art.</description><subject>Brain modeling</subject><subject>Computational modeling</subject><subject>Dorsal premotor cortex (PMd)</subject><subject>Encoding</subject><subject>generalized linear model (GLM)</subject><subject>Goodness of fit</subject><subject>Kolmogorov–Smirnov (KS) test</subject><subject>Neurons</subject><subject>numerical gradient descent</subject><subject>Numerical models</subject><subject>Optimization</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>primary motor cortex (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;M 1)</subject><subject>Rescaling</subject><subject>Spikes</subject><subject>Statistical analysis</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiUT5AcZLE8-L03a3H0cDiiYQUZZz0227pAgstsvBf-9uIJxm8uZ5Z5IHoQcCI0JAPZfjyXJEgYgRFSByzq_QgDKhMqmYur7sFG7RMKUNABDOhMzFAH0tonfBtmG_xstD-PG4jCbsE65js8OLucNtg-cEr1JPTEKy0bcdFHYef_tkzbbPSxPXXezwdDa_Rze12SY_PM87tHp7Lcfv2exz-jF-mWWWKtZmlS08QAXc5sZA4ZwxhSuoNJCLwhkPjBZ15R2vuAXuuMy5VLUklVJWWOHZHXo63T3E5vfoU6s3zTHuu5eaUqVIQbiSHUVOlI1NStHX-hDDzsQ_TUD38nQvT_fy9Fle13k8dYL3_sILxRgAZ_9ou2mM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Xing, Dong</creator><creator>Qian, Cunle</creator><creator>Li, Hongbao</creator><creator>Zhang, Shaomin</creator><creator>Zhang, Qiaosheng</creator><creator>Hao, Yaoyao</creator><creator>Zheng, Xiaoxiang</creator><creator>Wu, Zhaohui</creator><creator>Wang, Yiwen</creator><creator>Pan, Gang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7759-0406</orcidid></search><sort><creationdate>20180601</creationdate><title>Predicting Spike Trains from PMd to M1 Using Discrete Time Rescaling Targeted GLM</title><author>Xing, Dong ; Qian, Cunle ; Li, Hongbao ; Zhang, Shaomin ; Zhang, Qiaosheng ; Hao, Yaoyao ; Zheng, Xiaoxiang ; Wu, Zhaohui ; Wang, Yiwen ; Pan, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-bc5e00b06c4aa05ddaa5d528a0475dae0325fbed6b6c06d684689f81b99c7c7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Brain modeling</topic><topic>Computational modeling</topic><topic>Dorsal premotor cortex (PMd)</topic><topic>Encoding</topic><topic>generalized linear model (GLM)</topic><topic>Goodness of fit</topic><topic>Kolmogorov–Smirnov (KS) test</topic><topic>Neurons</topic><topic>numerical gradient descent</topic><topic>Numerical models</topic><topic>Optimization</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>primary motor cortex (&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;M 1)</topic><topic>Rescaling</topic><topic>Spikes</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xing, Dong</creatorcontrib><creatorcontrib>Qian, Cunle</creatorcontrib><creatorcontrib>Li, Hongbao</creatorcontrib><creatorcontrib>Zhang, Shaomin</creatorcontrib><creatorcontrib>Zhang, Qiaosheng</creatorcontrib><creatorcontrib>Hao, Yaoyao</creatorcontrib><creatorcontrib>Zheng, Xiaoxiang</creatorcontrib><creatorcontrib>Wu, Zhaohui</creatorcontrib><creatorcontrib>Wang, Yiwen</creatorcontrib><creatorcontrib>Pan, Gang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xing, Dong</au><au>Qian, Cunle</au><au>Li, Hongbao</au><au>Zhang, Shaomin</au><au>Zhang, Qiaosheng</au><au>Hao, Yaoyao</au><au>Zheng, Xiaoxiang</au><au>Wu, Zhaohui</au><au>Wang, Yiwen</au><au>Pan, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Spike Trains from PMd to M1 Using Discrete Time Rescaling Targeted GLM</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><spage>194</spage><epage>204</epage><pages>194-204</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>The computational model for spike train prediction with inputs from other related cerebral cortices is important in revealing the underlying connection among different cortical areas. To evaluate goodness-of-fit of the model, the time rescaling Kolmogorov-Smirnov (KS) statistic is usually applied, of which the calculation is separated from optimization procedure of the model. If the KS statistic could be embedded into objective function of the optimization procedure, precision of the firing probability series generated by the model would be increased directly. This paper presents a linear-nonlinear-Poisson cascade framework for prediction of spike trains, whose objective function is changed from maximizing log-likelihood of the spike trains to minimizing the penalization of discrete time rescaling KS statistic to eliminate the separation between optimization and evaluation of the model. We apply our model on the task of predicting firing probability of neurons from primary motor cortex with spike trains from dorsal premotor cortex as input, which are two cerebral cortices associated with movements planning and executing. The experimental results show that by introducing the goodness-of-fit metric into the objective function, results of the model will gain a significant improvement, which outperforms the state of the art.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2017.2707466</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7759-0406</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2018-06, Vol.10 (2), p.194-204
issn 2379-8920
2379-8939
language eng
recordid cdi_ieee_primary_7933006
source IEEE Electronic Library (IEL)
subjects Brain modeling
Computational modeling
Dorsal premotor cortex (PMd)
Encoding
generalized linear model (GLM)
Goodness of fit
Kolmogorov–Smirnov (KS) test
Neurons
numerical gradient descent
Numerical models
Optimization
Predictions
Predictive models
primary motor cortex (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">M 1)
Rescaling
Spikes
Statistical analysis
title Predicting Spike Trains from PMd to M1 Using Discrete Time Rescaling Targeted GLM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Spike%20Trains%20from%20PMd%20to%20M1%20Using%20Discrete%20Time%20Rescaling%20Targeted%20GLM&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Xing,%20Dong&rft.date=2018-06-01&rft.volume=10&rft.issue=2&rft.spage=194&rft.epage=204&rft.pages=194-204&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2017.2707466&rft_dat=%3Cproquest_RIE%3E2299151698%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299151698&rft_id=info:pmid/&rft_ieee_id=7933006&rfr_iscdi=true