An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis

This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2017-06, Vol.15 (6), p.1128-1136
Hauptverfasser: Moncao, A.C, Camilo Junior, C.G., Queiroz, L.T., Rodrigues, C.L., Leitao Junior, P.S., Vincenzi, A.M., Araujo, A.A., Dantas, A., de Souza, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1136
container_issue 6
container_start_page 1128
container_title Revista IEEE América Latina
container_volume 15
creator Moncao, A.C
Camilo Junior, C.G.
Queiroz, L.T.
Rodrigues, C.L.
Leitao Junior, P.S.
Vincenzi, A.M.
Araujo, A.A.
Dantas, A.
de Souza, J.T.
description This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.
doi_str_mv 10.1109/TLA.2017.7932701
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7932701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932701</ieee_id><sourcerecordid>1902275118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-f675c7eb05253837dc2b71865ca3b6f6fcf6278efa7706ae763619130448a25d3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsFbvgpcFz4k7u9mPHEOJHxAVaTwv2-1GU9qkZjdC_3u3tIqnGWbeG978ELoGkgKQ_K6uipQSkKnMGZUETtAEeKYSkuf09F9_ji68XxHClFBsgl6KDpff_XoMbd-ZYYeL7Xbojf3Eoce18wHPy6qc1Xj-VuF5MMFtXBc8Hn3bfeDnMU6iERedWe986y_RWWPW3l0d6xS935f17DGpXh-eZkWVWJBZSBohuZVuQTjlTDG5tHQhQQluDVuIRjS2EVQq1xgpiTBOCiYgB0ayTBnKl2yKbg93Y9ivMcbUq34cYgivISeUSg6gooocVHbovR9co7dDu4lfaiB6T01HanpPTR-pRcvNwdI65_7kv9sfNA1mvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902275118</pqid></control><display><type>article</type><title>An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Moncao, A.C ; Camilo Junior, C.G. ; Queiroz, L.T. ; Rodrigues, C.L. ; Leitao Junior, P.S. ; Vincenzi, A.M. ; Araujo, A.A. ; Dantas, A. ; de Souza, J.T.</creator><creatorcontrib>Moncao, A.C ; Camilo Junior, C.G. ; Queiroz, L.T. ; Rodrigues, C.L. ; Leitao Junior, P.S. ; Vincenzi, A.M. ; Araujo, A.A. ; Dantas, A. ; de Souza, J.T.</creatorcontrib><description>This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2017.7932701</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Evolutionary algorithms ; Fault detection ; Genetic Algorithm ; Genetic algorithms ; IEEE transactions ; In vitro ; Mutation ; Mutation Analysis ; Optimization ; Query languages ; Search-Based Software Testing ; Software ; Software testing ; SQL Statements</subject><ispartof>Revista IEEE América Latina, 2017-06, Vol.15 (6), p.1128-1136</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7932701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moncao, A.C</creatorcontrib><creatorcontrib>Camilo Junior, C.G.</creatorcontrib><creatorcontrib>Queiroz, L.T.</creatorcontrib><creatorcontrib>Rodrigues, C.L.</creatorcontrib><creatorcontrib>Leitao Junior, P.S.</creatorcontrib><creatorcontrib>Vincenzi, A.M.</creatorcontrib><creatorcontrib>Araujo, A.A.</creatorcontrib><creatorcontrib>Dantas, A.</creatorcontrib><creatorcontrib>de Souza, J.T.</creatorcontrib><title>An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.</description><subject>Evolutionary algorithms</subject><subject>Fault detection</subject><subject>Genetic Algorithm</subject><subject>Genetic algorithms</subject><subject>IEEE transactions</subject><subject>In vitro</subject><subject>Mutation</subject><subject>Mutation Analysis</subject><subject>Optimization</subject><subject>Query languages</subject><subject>Search-Based Software Testing</subject><subject>Software</subject><subject>Software testing</subject><subject>SQL Statements</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsFbvgpcFz4k7u9mPHEOJHxAVaTwv2-1GU9qkZjdC_3u3tIqnGWbeG978ELoGkgKQ_K6uipQSkKnMGZUETtAEeKYSkuf09F9_ji68XxHClFBsgl6KDpff_XoMbd-ZYYeL7Xbojf3Eoce18wHPy6qc1Xj-VuF5MMFtXBc8Hn3bfeDnMU6iERedWe986y_RWWPW3l0d6xS935f17DGpXh-eZkWVWJBZSBohuZVuQTjlTDG5tHQhQQluDVuIRjS2EVQq1xgpiTBOCiYgB0ayTBnKl2yKbg93Y9ivMcbUq34cYgivISeUSg6gooocVHbovR9co7dDu4lfaiB6T01HanpPTR-pRcvNwdI65_7kv9sfNA1mvw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Moncao, A.C</creator><creator>Camilo Junior, C.G.</creator><creator>Queiroz, L.T.</creator><creator>Rodrigues, C.L.</creator><creator>Leitao Junior, P.S.</creator><creator>Vincenzi, A.M.</creator><creator>Araujo, A.A.</creator><creator>Dantas, A.</creator><creator>de Souza, J.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis</title><author>Moncao, A.C ; Camilo Junior, C.G. ; Queiroz, L.T. ; Rodrigues, C.L. ; Leitao Junior, P.S. ; Vincenzi, A.M. ; Araujo, A.A. ; Dantas, A. ; de Souza, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-f675c7eb05253837dc2b71865ca3b6f6fcf6278efa7706ae763619130448a25d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Evolutionary algorithms</topic><topic>Fault detection</topic><topic>Genetic Algorithm</topic><topic>Genetic algorithms</topic><topic>IEEE transactions</topic><topic>In vitro</topic><topic>Mutation</topic><topic>Mutation Analysis</topic><topic>Optimization</topic><topic>Query languages</topic><topic>Search-Based Software Testing</topic><topic>Software</topic><topic>Software testing</topic><topic>SQL Statements</topic><toplevel>online_resources</toplevel><creatorcontrib>Moncao, A.C</creatorcontrib><creatorcontrib>Camilo Junior, C.G.</creatorcontrib><creatorcontrib>Queiroz, L.T.</creatorcontrib><creatorcontrib>Rodrigues, C.L.</creatorcontrib><creatorcontrib>Leitao Junior, P.S.</creatorcontrib><creatorcontrib>Vincenzi, A.M.</creatorcontrib><creatorcontrib>Araujo, A.A.</creatorcontrib><creatorcontrib>Dantas, A.</creatorcontrib><creatorcontrib>de Souza, J.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moncao, A.C</au><au>Camilo Junior, C.G.</au><au>Queiroz, L.T.</au><au>Rodrigues, C.L.</au><au>Leitao Junior, P.S.</au><au>Vincenzi, A.M.</au><au>Araujo, A.A.</au><au>Dantas, A.</au><au>de Souza, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>15</volume><issue>6</issue><spage>1128</spage><epage>1136</epage><pages>1128-1136</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2017.7932701</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2017-06, Vol.15 (6), p.1128-1136
issn 1548-0992
1548-0992
language eng
recordid cdi_ieee_primary_7932701
source IEEE Electronic Library (IEL)
subjects Evolutionary algorithms
Fault detection
Genetic Algorithm
Genetic algorithms
IEEE transactions
In vitro
Mutation
Mutation Analysis
Optimization
Query languages
Search-Based Software Testing
Software
Software testing
SQL Statements
title An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Evolutionary%20Approach%20to%20Test%20SELECT%20SQL%20Statements%20using%20Mutation%20Analysis&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Moncao,%20A.C&rft.date=2017-06-01&rft.volume=15&rft.issue=6&rft.spage=1128&rft.epage=1136&rft.pages=1128-1136&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2017.7932701&rft_dat=%3Cproquest_RIE%3E1902275118%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902275118&rft_id=info:pmid/&rft_ieee_id=7932701&rfr_iscdi=true