An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis
This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a s...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2017-06, Vol.15 (6), p.1128-1136 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1136 |
---|---|
container_issue | 6 |
container_start_page | 1128 |
container_title | Revista IEEE América Latina |
container_volume | 15 |
creator | Moncao, A.C Camilo Junior, C.G. Queiroz, L.T. Rodrigues, C.L. Leitao Junior, P.S. Vincenzi, A.M. Araujo, A.A. Dantas, A. de Souza, J.T. |
description | This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value. |
doi_str_mv | 10.1109/TLA.2017.7932701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7932701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932701</ieee_id><sourcerecordid>1902275118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-f675c7eb05253837dc2b71865ca3b6f6fcf6278efa7706ae763619130448a25d3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsFbvgpcFz4k7u9mPHEOJHxAVaTwv2-1GU9qkZjdC_3u3tIqnGWbeG978ELoGkgKQ_K6uipQSkKnMGZUETtAEeKYSkuf09F9_ji68XxHClFBsgl6KDpff_XoMbd-ZYYeL7Xbojf3Eoce18wHPy6qc1Xj-VuF5MMFtXBc8Hn3bfeDnMU6iERedWe986y_RWWPW3l0d6xS935f17DGpXh-eZkWVWJBZSBohuZVuQTjlTDG5tHQhQQluDVuIRjS2EVQq1xgpiTBOCiYgB0ayTBnKl2yKbg93Y9ivMcbUq34cYgivISeUSg6gooocVHbovR9co7dDu4lfaiB6T01HanpPTR-pRcvNwdI65_7kv9sfNA1mvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902275118</pqid></control><display><type>article</type><title>An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Moncao, A.C ; Camilo Junior, C.G. ; Queiroz, L.T. ; Rodrigues, C.L. ; Leitao Junior, P.S. ; Vincenzi, A.M. ; Araujo, A.A. ; Dantas, A. ; de Souza, J.T.</creator><creatorcontrib>Moncao, A.C ; Camilo Junior, C.G. ; Queiroz, L.T. ; Rodrigues, C.L. ; Leitao Junior, P.S. ; Vincenzi, A.M. ; Araujo, A.A. ; Dantas, A. ; de Souza, J.T.</creatorcontrib><description>This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2017.7932701</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Evolutionary algorithms ; Fault detection ; Genetic Algorithm ; Genetic algorithms ; IEEE transactions ; In vitro ; Mutation ; Mutation Analysis ; Optimization ; Query languages ; Search-Based Software Testing ; Software ; Software testing ; SQL Statements</subject><ispartof>Revista IEEE América Latina, 2017-06, Vol.15 (6), p.1128-1136</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932701$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7932701$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moncao, A.C</creatorcontrib><creatorcontrib>Camilo Junior, C.G.</creatorcontrib><creatorcontrib>Queiroz, L.T.</creatorcontrib><creatorcontrib>Rodrigues, C.L.</creatorcontrib><creatorcontrib>Leitao Junior, P.S.</creatorcontrib><creatorcontrib>Vincenzi, A.M.</creatorcontrib><creatorcontrib>Araujo, A.A.</creatorcontrib><creatorcontrib>Dantas, A.</creatorcontrib><creatorcontrib>de Souza, J.T.</creatorcontrib><title>An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.</description><subject>Evolutionary algorithms</subject><subject>Fault detection</subject><subject>Genetic Algorithm</subject><subject>Genetic algorithms</subject><subject>IEEE transactions</subject><subject>In vitro</subject><subject>Mutation</subject><subject>Mutation Analysis</subject><subject>Optimization</subject><subject>Query languages</subject><subject>Search-Based Software Testing</subject><subject>Software</subject><subject>Software testing</subject><subject>SQL Statements</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsFbvgpcFz4k7u9mPHEOJHxAVaTwv2-1GU9qkZjdC_3u3tIqnGWbeG978ELoGkgKQ_K6uipQSkKnMGZUETtAEeKYSkuf09F9_ji68XxHClFBsgl6KDpff_XoMbd-ZYYeL7Xbojf3Eoce18wHPy6qc1Xj-VuF5MMFtXBc8Hn3bfeDnMU6iERedWe986y_RWWPW3l0d6xS935f17DGpXh-eZkWVWJBZSBohuZVuQTjlTDG5tHQhQQluDVuIRjS2EVQq1xgpiTBOCiYgB0ayTBnKl2yKbg93Y9ivMcbUq34cYgivISeUSg6gooocVHbovR9co7dDu4lfaiB6T01HanpPTR-pRcvNwdI65_7kv9sfNA1mvw</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Moncao, A.C</creator><creator>Camilo Junior, C.G.</creator><creator>Queiroz, L.T.</creator><creator>Rodrigues, C.L.</creator><creator>Leitao Junior, P.S.</creator><creator>Vincenzi, A.M.</creator><creator>Araujo, A.A.</creator><creator>Dantas, A.</creator><creator>de Souza, J.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis</title><author>Moncao, A.C ; Camilo Junior, C.G. ; Queiroz, L.T. ; Rodrigues, C.L. ; Leitao Junior, P.S. ; Vincenzi, A.M. ; Araujo, A.A. ; Dantas, A. ; de Souza, J.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-f675c7eb05253837dc2b71865ca3b6f6fcf6278efa7706ae763619130448a25d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Evolutionary algorithms</topic><topic>Fault detection</topic><topic>Genetic Algorithm</topic><topic>Genetic algorithms</topic><topic>IEEE transactions</topic><topic>In vitro</topic><topic>Mutation</topic><topic>Mutation Analysis</topic><topic>Optimization</topic><topic>Query languages</topic><topic>Search-Based Software Testing</topic><topic>Software</topic><topic>Software testing</topic><topic>SQL Statements</topic><toplevel>online_resources</toplevel><creatorcontrib>Moncao, A.C</creatorcontrib><creatorcontrib>Camilo Junior, C.G.</creatorcontrib><creatorcontrib>Queiroz, L.T.</creatorcontrib><creatorcontrib>Rodrigues, C.L.</creatorcontrib><creatorcontrib>Leitao Junior, P.S.</creatorcontrib><creatorcontrib>Vincenzi, A.M.</creatorcontrib><creatorcontrib>Araujo, A.A.</creatorcontrib><creatorcontrib>Dantas, A.</creatorcontrib><creatorcontrib>de Souza, J.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moncao, A.C</au><au>Camilo Junior, C.G.</au><au>Queiroz, L.T.</au><au>Rodrigues, C.L.</au><au>Leitao Junior, P.S.</au><au>Vincenzi, A.M.</au><au>Araujo, A.A.</au><au>Dantas, A.</au><au>de Souza, J.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>15</volume><issue>6</issue><spage>1128</spage><epage>1136</epage><pages>1128-1136</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2017.7932701</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2017-06, Vol.15 (6), p.1128-1136 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_ieee_primary_7932701 |
source | IEEE Electronic Library (IEL) |
subjects | Evolutionary algorithms Fault detection Genetic Algorithm Genetic algorithms IEEE transactions In vitro Mutation Mutation Analysis Optimization Query languages Search-Based Software Testing Software Software testing SQL Statements |
title | An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Evolutionary%20Approach%20to%20Test%20SELECT%20SQL%20Statements%20using%20Mutation%20Analysis&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Moncao,%20A.C&rft.date=2017-06-01&rft.volume=15&rft.issue=6&rft.spage=1128&rft.epage=1136&rft.pages=1128-1136&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2017.7932701&rft_dat=%3Cproquest_RIE%3E1902275118%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1902275118&rft_id=info:pmid/&rft_ieee_id=7932701&rfr_iscdi=true |