An Evolutionary Approach to Test SELECT SQL Statements using Mutation Analysis

This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2017-06, Vol.15 (6), p.1128-1136
Hauptverfasser: Moncao, A.C, Camilo Junior, C.G., Queiroz, L.T., Rodrigues, C.L., Leitao Junior, P.S., Vincenzi, A.M., Araujo, A.A., Dantas, A., de Souza, J.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes combining the mutation testing technique with evolutionary computing to improve the test data applied to SELECT instructions. From a heuristic perspective, this approach uses Genetic Algorithms to optimize tuples selection from an original database. In other words, generating a smaller amount of tuples able to detect faults in the instructions. Mutants are analyzed to evaluate each set of data tests selected during the evolutionary process. Once the appropriate reduced database was found, it can be used whenever the SQL statement test is necessary. The experimental results indicate that the metaheuristics outperform random methods and reach, in average, 80.3% of the optimal value.
ISSN:1548-0992
1548-0992
DOI:10.1109/TLA.2017.7932701