Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods
Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2018-05, Vol.26 (3), p.813-827 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 827 |
---|---|
container_issue | 3 |
container_start_page | 813 |
container_title | IEEE transactions on control systems technology |
container_volume | 26 |
creator | Jamshidnejad, Anahita Papamichail, Ioannis Papageorgiou, Markos De Schutter, Bart |
description | Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationally and performance-wise, in finding optima of optimization problems. In this paper, we propose an MPC system for an urban traffic network that applies a gradient-based optimization approach to solve the control optimization problem. The controller uses a new smooth integrated flow-emission model to find a balanced tradeoff between reduction of the congestion and of the total emissions. We also introduce efficient smoothening methods for nonsmooth mathematical models of physical systems. The effectiveness of the proposed approach is demonstrated via a case study. |
doi_str_mv | 10.1109/TCST.2017.2699160 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7932138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932138</ieee_id><sourcerecordid>2025118956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-dd5777db53c08d1f79cfa79fe0aa9b73b4dc485404dc6bf1bde47b8b107fcf8c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhQdRsD5-gLgJuJ6aTCaTiTstvsCq0Loe8rjR1GmiSWrx3zulxdU5F845F76iOCN4TAgWl_PJbD6uMOHjqhGCNHivGBHG2hK3DdsfPG5o2TDaHBZHKS0wJjWr-KhYz1YpS-el6gFNg4G-fI1gnM7uB9Ak-BxDj5xHb1FJj-ZRWus0eoa8DvEzXaHbze3AZzQL_Sq74NGNTGDQYO7BQ5Q9mi1DyB_gnX9HU8gfwaST4sDKPsHpTo-Lt7vb-eShfHq5f5xcP5WaMpFLYxjn3ChGNW4NsVxoK7mwgKUUilNVG123rMaDNsoSZaDmqlUEc6ttq-lxcbHd_YrhewUpd4uwin542VW4YoS0gjVDimxTOoaUItjuK7qljL8dwd2Gb7fh2234dju-Q-d823EA8J_nglaEtvQPMQN5Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025118956</pqid></control><display><type>article</type><title>Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods</title><source>IEEE Electronic Library (IEL)</source><creator>Jamshidnejad, Anahita ; Papamichail, Ioannis ; Papageorgiou, Markos ; De Schutter, Bart</creator><creatorcontrib>Jamshidnejad, Anahita ; Papamichail, Ioannis ; Papageorgiou, Markos ; De Schutter, Bart</creatorcontrib><description>Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationally and performance-wise, in finding optima of optimization problems. In this paper, we propose an MPC system for an urban traffic network that applies a gradient-based optimization approach to solve the control optimization problem. The controller uses a new smooth integrated flow-emission model to find a balanced tradeoff between reduction of the congestion and of the total emissions. We also introduce efficient smoothening methods for nonsmooth mathematical models of physical systems. The effectiveness of the proposed approach is demonstrated via a case study.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2017.2699160</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Computing time ; Control methods ; Control systems ; Gradient-based optimization ; Mathematical model ; model-predictive control (MPC) ; Optimization ; Predictive control ; Predictive models ; Roads ; smoothening ; System effectiveness ; Traffic congestion ; Traffic control ; Traffic models ; urban traffic control</subject><ispartof>IEEE transactions on control systems technology, 2018-05, Vol.26 (3), p.813-827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-dd5777db53c08d1f79cfa79fe0aa9b73b4dc485404dc6bf1bde47b8b107fcf8c3</citedby><cites>FETCH-LOGICAL-c359t-dd5777db53c08d1f79cfa79fe0aa9b73b4dc485404dc6bf1bde47b8b107fcf8c3</cites><orcidid>0000-0001-9151-2607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7932138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jamshidnejad, Anahita</creatorcontrib><creatorcontrib>Papamichail, Ioannis</creatorcontrib><creatorcontrib>Papageorgiou, Markos</creatorcontrib><creatorcontrib>De Schutter, Bart</creatorcontrib><title>Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationally and performance-wise, in finding optima of optimization problems. In this paper, we propose an MPC system for an urban traffic network that applies a gradient-based optimization approach to solve the control optimization problem. The controller uses a new smooth integrated flow-emission model to find a balanced tradeoff between reduction of the congestion and of the total emissions. We also introduce efficient smoothening methods for nonsmooth mathematical models of physical systems. The effectiveness of the proposed approach is demonstrated via a case study.</description><subject>Computational modeling</subject><subject>Computing time</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Gradient-based optimization</subject><subject>Mathematical model</subject><subject>model-predictive control (MPC)</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Roads</subject><subject>smoothening</subject><subject>System effectiveness</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic models</subject><subject>urban traffic control</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhQdRsD5-gLgJuJ6aTCaTiTstvsCq0Loe8rjR1GmiSWrx3zulxdU5F845F76iOCN4TAgWl_PJbD6uMOHjqhGCNHivGBHG2hK3DdsfPG5o2TDaHBZHKS0wJjWr-KhYz1YpS-el6gFNg4G-fI1gnM7uB9Ak-BxDj5xHb1FJj-ZRWus0eoa8DvEzXaHbze3AZzQL_Sq74NGNTGDQYO7BQ5Q9mi1DyB_gnX9HU8gfwaST4sDKPsHpTo-Lt7vb-eShfHq5f5xcP5WaMpFLYxjn3ChGNW4NsVxoK7mwgKUUilNVG123rMaDNsoSZaDmqlUEc6ttq-lxcbHd_YrhewUpd4uwin542VW4YoS0gjVDimxTOoaUItjuK7qljL8dwd2Gb7fh2234dju-Q-d823EA8J_nglaEtvQPMQN5Tw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Jamshidnejad, Anahita</creator><creator>Papamichail, Ioannis</creator><creator>Papageorgiou, Markos</creator><creator>De Schutter, Bart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9151-2607</orcidid></search><sort><creationdate>201805</creationdate><title>Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods</title><author>Jamshidnejad, Anahita ; Papamichail, Ioannis ; Papageorgiou, Markos ; De Schutter, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-dd5777db53c08d1f79cfa79fe0aa9b73b4dc485404dc6bf1bde47b8b107fcf8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational modeling</topic><topic>Computing time</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Gradient-based optimization</topic><topic>Mathematical model</topic><topic>model-predictive control (MPC)</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Roads</topic><topic>smoothening</topic><topic>System effectiveness</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic models</topic><topic>urban traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamshidnejad, Anahita</creatorcontrib><creatorcontrib>Papamichail, Ioannis</creatorcontrib><creatorcontrib>Papageorgiou, Markos</creatorcontrib><creatorcontrib>De Schutter, Bart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jamshidnejad, Anahita</au><au>Papamichail, Ioannis</au><au>Papageorgiou, Markos</au><au>De Schutter, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2018-05</date><risdate>2018</risdate><volume>26</volume><issue>3</issue><spage>813</spage><epage>827</epage><pages>813-827</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationally and performance-wise, in finding optima of optimization problems. In this paper, we propose an MPC system for an urban traffic network that applies a gradient-based optimization approach to solve the control optimization problem. The controller uses a new smooth integrated flow-emission model to find a balanced tradeoff between reduction of the congestion and of the total emissions. We also introduce efficient smoothening methods for nonsmooth mathematical models of physical systems. The effectiveness of the proposed approach is demonstrated via a case study.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2017.2699160</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9151-2607</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2018-05, Vol.26 (3), p.813-827 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_7932138 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Computing time Control methods Control systems Gradient-based optimization Mathematical model model-predictive control (MPC) Optimization Predictive control Predictive models Roads smoothening System effectiveness Traffic congestion Traffic control Traffic models urban traffic control |
title | Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainable%20Model-Predictive%20Control%20in%20Urban%20Traffic%20Networks:%20Efficient%20Solution%20Based%20on%20General%20Smoothening%20Methods&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Jamshidnejad,%20Anahita&rft.date=2018-05&rft.volume=26&rft.issue=3&rft.spage=813&rft.epage=827&rft.pages=813-827&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2017.2699160&rft_dat=%3Cproquest_RIE%3E2025118956%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025118956&rft_id=info:pmid/&rft_ieee_id=7932138&rfr_iscdi=true |