Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods

Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2018-05, Vol.26 (3), p.813-827
Hauptverfasser: Jamshidnejad, Anahita, Papamichail, Ioannis, Papageorgiou, Markos, De Schutter, Bart
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 827
container_issue 3
container_start_page 813
container_title IEEE transactions on control systems technology
container_volume 26
creator Jamshidnejad, Anahita
Papamichail, Ioannis
Papageorgiou, Markos
De Schutter, Bart
description Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationally and performance-wise, in finding optima of optimization problems. In this paper, we propose an MPC system for an urban traffic network that applies a gradient-based optimization approach to solve the control optimization problem. The controller uses a new smooth integrated flow-emission model to find a balanced tradeoff between reduction of the congestion and of the total emissions. We also introduce efficient smoothening methods for nonsmooth mathematical models of physical systems. The effectiveness of the proposed approach is demonstrated via a case study.
doi_str_mv 10.1109/TCST.2017.2699160
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7932138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7932138</ieee_id><sourcerecordid>2025118956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-dd5777db53c08d1f79cfa79fe0aa9b73b4dc485404dc6bf1bde47b8b107fcf8c3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhQdRsD5-gLgJuJ6aTCaTiTstvsCq0Loe8rjR1GmiSWrx3zulxdU5F845F76iOCN4TAgWl_PJbD6uMOHjqhGCNHivGBHG2hK3DdsfPG5o2TDaHBZHKS0wJjWr-KhYz1YpS-el6gFNg4G-fI1gnM7uB9Ak-BxDj5xHb1FJj-ZRWus0eoa8DvEzXaHbze3AZzQL_Sq74NGNTGDQYO7BQ5Q9mi1DyB_gnX9HU8gfwaST4sDKPsHpTo-Lt7vb-eShfHq5f5xcP5WaMpFLYxjn3ChGNW4NsVxoK7mwgKUUilNVG123rMaDNsoSZaDmqlUEc6ttq-lxcbHd_YrhewUpd4uwin542VW4YoS0gjVDimxTOoaUItjuK7qljL8dwd2Gb7fh2234dju-Q-d823EA8J_nglaEtvQPMQN5Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025118956</pqid></control><display><type>article</type><title>Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods</title><source>IEEE Electronic Library (IEL)</source><creator>Jamshidnejad, Anahita ; Papamichail, Ioannis ; Papageorgiou, Markos ; De Schutter, Bart</creator><creatorcontrib>Jamshidnejad, Anahita ; Papamichail, Ioannis ; Papageorgiou, Markos ; De Schutter, Bart</creatorcontrib><description>Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationally and performance-wise, in finding optima of optimization problems. In this paper, we propose an MPC system for an urban traffic network that applies a gradient-based optimization approach to solve the control optimization problem. The controller uses a new smooth integrated flow-emission model to find a balanced tradeoff between reduction of the congestion and of the total emissions. We also introduce efficient smoothening methods for nonsmooth mathematical models of physical systems. The effectiveness of the proposed approach is demonstrated via a case study.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2017.2699160</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computational modeling ; Computing time ; Control methods ; Control systems ; Gradient-based optimization ; Mathematical model ; model-predictive control (MPC) ; Optimization ; Predictive control ; Predictive models ; Roads ; smoothening ; System effectiveness ; Traffic congestion ; Traffic control ; Traffic models ; urban traffic control</subject><ispartof>IEEE transactions on control systems technology, 2018-05, Vol.26 (3), p.813-827</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-dd5777db53c08d1f79cfa79fe0aa9b73b4dc485404dc6bf1bde47b8b107fcf8c3</citedby><cites>FETCH-LOGICAL-c359t-dd5777db53c08d1f79cfa79fe0aa9b73b4dc485404dc6bf1bde47b8b107fcf8c3</cites><orcidid>0000-0001-9151-2607</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7932138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7932138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jamshidnejad, Anahita</creatorcontrib><creatorcontrib>Papamichail, Ioannis</creatorcontrib><creatorcontrib>Papageorgiou, Markos</creatorcontrib><creatorcontrib>De Schutter, Bart</creatorcontrib><title>Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationally and performance-wise, in finding optima of optimization problems. In this paper, we propose an MPC system for an urban traffic network that applies a gradient-based optimization approach to solve the control optimization problem. The controller uses a new smooth integrated flow-emission model to find a balanced tradeoff between reduction of the congestion and of the total emissions. We also introduce efficient smoothening methods for nonsmooth mathematical models of physical systems. The effectiveness of the proposed approach is demonstrated via a case study.</description><subject>Computational modeling</subject><subject>Computing time</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Gradient-based optimization</subject><subject>Mathematical model</subject><subject>model-predictive control (MPC)</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Roads</subject><subject>smoothening</subject><subject>System effectiveness</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic models</subject><subject>urban traffic control</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhQdRsD5-gLgJuJ6aTCaTiTstvsCq0Loe8rjR1GmiSWrx3zulxdU5F845F76iOCN4TAgWl_PJbD6uMOHjqhGCNHivGBHG2hK3DdsfPG5o2TDaHBZHKS0wJjWr-KhYz1YpS-el6gFNg4G-fI1gnM7uB9Ak-BxDj5xHb1FJj-ZRWus0eoa8DvEzXaHbze3AZzQL_Sq74NGNTGDQYO7BQ5Q9mi1DyB_gnX9HU8gfwaST4sDKPsHpTo-Lt7vb-eShfHq5f5xcP5WaMpFLYxjn3ChGNW4NsVxoK7mwgKUUilNVG123rMaDNsoSZaDmqlUEc6ttq-lxcbHd_YrhewUpd4uwin542VW4YoS0gjVDimxTOoaUItjuK7qljL8dwd2Gb7fh2234dju-Q-d823EA8J_nglaEtvQPMQN5Tw</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Jamshidnejad, Anahita</creator><creator>Papamichail, Ioannis</creator><creator>Papageorgiou, Markos</creator><creator>De Schutter, Bart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9151-2607</orcidid></search><sort><creationdate>201805</creationdate><title>Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods</title><author>Jamshidnejad, Anahita ; Papamichail, Ioannis ; Papageorgiou, Markos ; De Schutter, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-dd5777db53c08d1f79cfa79fe0aa9b73b4dc485404dc6bf1bde47b8b107fcf8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational modeling</topic><topic>Computing time</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Gradient-based optimization</topic><topic>Mathematical model</topic><topic>model-predictive control (MPC)</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Roads</topic><topic>smoothening</topic><topic>System effectiveness</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic models</topic><topic>urban traffic control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamshidnejad, Anahita</creatorcontrib><creatorcontrib>Papamichail, Ioannis</creatorcontrib><creatorcontrib>Papageorgiou, Markos</creatorcontrib><creatorcontrib>De Schutter, Bart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jamshidnejad, Anahita</au><au>Papamichail, Ioannis</au><au>Papageorgiou, Markos</au><au>De Schutter, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2018-05</date><risdate>2018</risdate><volume>26</volume><issue>3</issue><spage>813</spage><epage>827</epage><pages>813-827</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>Traffic-responsive control approaches, including model-predictive control (MPC), are efficient methods for making the best use of the available network capacity. Moreover, gradient-based approaches, which can be applied to smooth optimization problems, have proven their efficiency, both computationally and performance-wise, in finding optima of optimization problems. In this paper, we propose an MPC system for an urban traffic network that applies a gradient-based optimization approach to solve the control optimization problem. The controller uses a new smooth integrated flow-emission model to find a balanced tradeoff between reduction of the congestion and of the total emissions. We also introduce efficient smoothening methods for nonsmooth mathematical models of physical systems. The effectiveness of the proposed approach is demonstrated via a case study.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2017.2699160</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9151-2607</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2018-05, Vol.26 (3), p.813-827
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_7932138
source IEEE Electronic Library (IEL)
subjects Computational modeling
Computing time
Control methods
Control systems
Gradient-based optimization
Mathematical model
model-predictive control (MPC)
Optimization
Predictive control
Predictive models
Roads
smoothening
System effectiveness
Traffic congestion
Traffic control
Traffic models
urban traffic control
title Sustainable Model-Predictive Control in Urban Traffic Networks: Efficient Solution Based on General Smoothening Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A01%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainable%20Model-Predictive%20Control%20in%20Urban%20Traffic%20Networks:%20Efficient%20Solution%20Based%20on%20General%20Smoothening%20Methods&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Jamshidnejad,%20Anahita&rft.date=2018-05&rft.volume=26&rft.issue=3&rft.spage=813&rft.epage=827&rft.pages=813-827&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2017.2699160&rft_dat=%3Cproquest_RIE%3E2025118956%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025118956&rft_id=info:pmid/&rft_ieee_id=7932138&rfr_iscdi=true