A Unified Continuous and Discrete Model for Double-Gate MOSFETs With Spatially Varying or Pulsed Doping Profiles

This paper presents a unified continuous and discrete model covering all device operating regions of double-gate MOSFETs for the first time. With a specific variable transformation method, the 1-D Poisson's equation in the Cartesian coordinate for double-gate MOSFETs is transformed into the cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of the Electron Devices Society 2017-07, Vol.5 (4), p.244-255
Hauptverfasser: Chuyang Hong, Jun Zhou, Qi Cheng, Kunkun Zhu, Kuo, James B., Yijian Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 4
container_start_page 244
container_title IEEE journal of the Electron Devices Society
container_volume 5
creator Chuyang Hong
Jun Zhou
Qi Cheng
Kunkun Zhu
Kuo, James B.
Yijian Chen
description This paper presents a unified continuous and discrete model covering all device operating regions of double-gate MOSFETs for the first time. With a specific variable transformation method, the 1-D Poisson's equation in the Cartesian coordinate for double-gate MOSFETs is transformed into the corresponding form in the cylindrical coordinate. Such a transformed cylindrical Poisson's equation results in a simple algebraic equation, which correlates the (inversion-charge induced) surface potential to the field and allows the long-channel drain-current formula to be derived from the Pao-Sah integral. This model can be readily applied to predict the effects of both continuous and discrete doping variations. The short-channel-effect model is also developed by solving the 2-D Poisson's equation using the eigenfunction-expansion method. The accuracy of both long-channel and short-channel models is confirmed by the numerical calculations and TCAD simulations.
doi_str_mv 10.1109/JEDS.2017.2704106
format Article
fullrecord <record><control><sourceid>doaj_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7927695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7927695</ieee_id><doaj_id>oai_doaj_org_article_b2cfa3cad5404e698b8e0bb34abb7bd2</doaj_id><sourcerecordid>oai_doaj_org_article_b2cfa3cad5404e698b8e0bb34abb7bd2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-befa6419eaba5eb7028f87b67200fb6773f4d1f0be635967418d3c436e4d3b73</originalsourceid><addsrcrecordid>eNpNkU1OwzAQhSMEEgh6AMTGF0ixY9dOllXLr4paqQWWlh2Pi1GIIztZcHscWiFm80ZvZj6N9LLsmuApIbi6fb5bbqcFJmJaCMwI5ifZRUF4mXNB2em__jybxPiJU5WEV5xfZN0cvbbOOjBo4dvetYMfIlKtQUsX6wA9oBdvoEHWB7T0g24gf1Cju97e3-0ienf9B9p2qneqab7Rmwrfrt2jtL0ZmpiwS9-NxiZ46xqIV9mZVWkwOepltkucxWO-Wj88LearvKaC9bkGqzgjFSitZqAFLkpbCs1FgbFNIqhlhlisgdNZxQUjpaE1oxyYoVrQy-zpgDVefcouuK_0mPTKyV_Dh71UoXd1A1IXtVW0VmbGMANelboErDVlSmuhTZFY5MCqg48xgP3jESzHAOQYgBwDkMcA0s3N4cYBwN--qArBqxn9AfjSgiw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Unified Continuous and Discrete Model for Double-Gate MOSFETs With Spatially Varying or Pulsed Doping Profiles</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chuyang Hong ; Jun Zhou ; Qi Cheng ; Kunkun Zhu ; Kuo, James B. ; Yijian Chen</creator><creatorcontrib>Chuyang Hong ; Jun Zhou ; Qi Cheng ; Kunkun Zhu ; Kuo, James B. ; Yijian Chen</creatorcontrib><description>This paper presents a unified continuous and discrete model covering all device operating regions of double-gate MOSFETs for the first time. With a specific variable transformation method, the 1-D Poisson's equation in the Cartesian coordinate for double-gate MOSFETs is transformed into the corresponding form in the cylindrical coordinate. Such a transformed cylindrical Poisson's equation results in a simple algebraic equation, which correlates the (inversion-charge induced) surface potential to the field and allows the long-channel drain-current formula to be derived from the Pao-Sah integral. This model can be readily applied to predict the effects of both continuous and discrete doping variations. The short-channel-effect model is also developed by solving the 2-D Poisson's equation using the eigenfunction-expansion method. The accuracy of both long-channel and short-channel models is confirmed by the numerical calculations and TCAD simulations.</description><identifier>ISSN: 2168-6734</identifier><identifier>EISSN: 2168-6734</identifier><identifier>DOI: 10.1109/JEDS.2017.2704106</identifier><identifier>CODEN: IJEDAC</identifier><language>eng</language><publisher>IEEE</publisher><subject>discrete dopant variations ; Doping profiles ; Double-gate MOSFET/FinFET ; Mathematical model ; MOSFET ; Semiconductor device modeling ; Semiconductor process modeling ; surface-field based model</subject><ispartof>IEEE journal of the Electron Devices Society, 2017-07, Vol.5 (4), p.244-255</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-befa6419eaba5eb7028f87b67200fb6773f4d1f0be635967418d3c436e4d3b73</citedby><cites>FETCH-LOGICAL-c374t-befa6419eaba5eb7028f87b67200fb6773f4d1f0be635967418d3c436e4d3b73</cites><orcidid>0000-0002-4668-7413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7927695$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Chuyang Hong</creatorcontrib><creatorcontrib>Jun Zhou</creatorcontrib><creatorcontrib>Qi Cheng</creatorcontrib><creatorcontrib>Kunkun Zhu</creatorcontrib><creatorcontrib>Kuo, James B.</creatorcontrib><creatorcontrib>Yijian Chen</creatorcontrib><title>A Unified Continuous and Discrete Model for Double-Gate MOSFETs With Spatially Varying or Pulsed Doping Profiles</title><title>IEEE journal of the Electron Devices Society</title><addtitle>JEDS</addtitle><description>This paper presents a unified continuous and discrete model covering all device operating regions of double-gate MOSFETs for the first time. With a specific variable transformation method, the 1-D Poisson's equation in the Cartesian coordinate for double-gate MOSFETs is transformed into the corresponding form in the cylindrical coordinate. Such a transformed cylindrical Poisson's equation results in a simple algebraic equation, which correlates the (inversion-charge induced) surface potential to the field and allows the long-channel drain-current formula to be derived from the Pao-Sah integral. This model can be readily applied to predict the effects of both continuous and discrete doping variations. The short-channel-effect model is also developed by solving the 2-D Poisson's equation using the eigenfunction-expansion method. The accuracy of both long-channel and short-channel models is confirmed by the numerical calculations and TCAD simulations.</description><subject>discrete dopant variations</subject><subject>Doping profiles</subject><subject>Double-gate MOSFET/FinFET</subject><subject>Mathematical model</subject><subject>MOSFET</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor process modeling</subject><subject>surface-field based model</subject><issn>2168-6734</issn><issn>2168-6734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1OwzAQhSMEEgh6AMTGF0ixY9dOllXLr4paqQWWlh2Pi1GIIztZcHscWiFm80ZvZj6N9LLsmuApIbi6fb5bbqcFJmJaCMwI5ifZRUF4mXNB2em__jybxPiJU5WEV5xfZN0cvbbOOjBo4dvetYMfIlKtQUsX6wA9oBdvoEHWB7T0g24gf1Cju97e3-0ienf9B9p2qneqab7Rmwrfrt2jtL0ZmpiwS9-NxiZ46xqIV9mZVWkwOepltkucxWO-Wj88LearvKaC9bkGqzgjFSitZqAFLkpbCs1FgbFNIqhlhlisgdNZxQUjpaE1oxyYoVrQy-zpgDVefcouuK_0mPTKyV_Dh71UoXd1A1IXtVW0VmbGMANelboErDVlSmuhTZFY5MCqg48xgP3jESzHAOQYgBwDkMcA0s3N4cYBwN--qArBqxn9AfjSgiw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Chuyang Hong</creator><creator>Jun Zhou</creator><creator>Qi Cheng</creator><creator>Kunkun Zhu</creator><creator>Kuo, James B.</creator><creator>Yijian Chen</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4668-7413</orcidid></search><sort><creationdate>20170701</creationdate><title>A Unified Continuous and Discrete Model for Double-Gate MOSFETs With Spatially Varying or Pulsed Doping Profiles</title><author>Chuyang Hong ; Jun Zhou ; Qi Cheng ; Kunkun Zhu ; Kuo, James B. ; Yijian Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-befa6419eaba5eb7028f87b67200fb6773f4d1f0be635967418d3c436e4d3b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>discrete dopant variations</topic><topic>Doping profiles</topic><topic>Double-gate MOSFET/FinFET</topic><topic>Mathematical model</topic><topic>MOSFET</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor process modeling</topic><topic>surface-field based model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuyang Hong</creatorcontrib><creatorcontrib>Jun Zhou</creatorcontrib><creatorcontrib>Qi Cheng</creatorcontrib><creatorcontrib>Kunkun Zhu</creatorcontrib><creatorcontrib>Kuo, James B.</creatorcontrib><creatorcontrib>Yijian Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of the Electron Devices Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuyang Hong</au><au>Jun Zhou</au><au>Qi Cheng</au><au>Kunkun Zhu</au><au>Kuo, James B.</au><au>Yijian Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified Continuous and Discrete Model for Double-Gate MOSFETs With Spatially Varying or Pulsed Doping Profiles</atitle><jtitle>IEEE journal of the Electron Devices Society</jtitle><stitle>JEDS</stitle><date>2017-07-01</date><risdate>2017</risdate><volume>5</volume><issue>4</issue><spage>244</spage><epage>255</epage><pages>244-255</pages><issn>2168-6734</issn><eissn>2168-6734</eissn><coden>IJEDAC</coden><abstract>This paper presents a unified continuous and discrete model covering all device operating regions of double-gate MOSFETs for the first time. With a specific variable transformation method, the 1-D Poisson's equation in the Cartesian coordinate for double-gate MOSFETs is transformed into the corresponding form in the cylindrical coordinate. Such a transformed cylindrical Poisson's equation results in a simple algebraic equation, which correlates the (inversion-charge induced) surface potential to the field and allows the long-channel drain-current formula to be derived from the Pao-Sah integral. This model can be readily applied to predict the effects of both continuous and discrete doping variations. The short-channel-effect model is also developed by solving the 2-D Poisson's equation using the eigenfunction-expansion method. The accuracy of both long-channel and short-channel models is confirmed by the numerical calculations and TCAD simulations.</abstract><pub>IEEE</pub><doi>10.1109/JEDS.2017.2704106</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4668-7413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6734
ispartof IEEE journal of the Electron Devices Society, 2017-07, Vol.5 (4), p.244-255
issn 2168-6734
2168-6734
language eng
recordid cdi_ieee_primary_7927695
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects discrete dopant variations
Doping profiles
Double-gate MOSFET/FinFET
Mathematical model
MOSFET
Semiconductor device modeling
Semiconductor process modeling
surface-field based model
title A Unified Continuous and Discrete Model for Double-Gate MOSFETs With Spatially Varying or Pulsed Doping Profiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified%20Continuous%20and%20Discrete%20Model%20for%20Double-Gate%20MOSFETs%20With%20Spatially%20Varying%20or%20Pulsed%20Doping%20Profiles&rft.jtitle=IEEE%20journal%20of%20the%20Electron%20Devices%20Society&rft.au=Chuyang%20Hong&rft.date=2017-07-01&rft.volume=5&rft.issue=4&rft.spage=244&rft.epage=255&rft.pages=244-255&rft.issn=2168-6734&rft.eissn=2168-6734&rft.coden=IJEDAC&rft_id=info:doi/10.1109/JEDS.2017.2704106&rft_dat=%3Cdoaj_ieee_%3Eoai_doaj_org_article_b2cfa3cad5404e698b8e0bb34abb7bd2%3C/doaj_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7927695&rft_doaj_id=oai_doaj_org_article_b2cfa3cad5404e698b8e0bb34abb7bd2&rfr_iscdi=true