Smart Augmentation Learning an Optimal Data Augmentation Strategy

A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2017, Vol.5, p.5858-5869
Hauptverfasser: Lemley, Joseph, Bazrafkan, Shabab, Corcoran, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5869
container_issue
container_start_page 5858
container_title IEEE access
container_volume 5
creator Lemley, Joseph
Bazrafkan, Shabab
Corcoran, Peter
description A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.
doi_str_mv 10.1109/ACCESS.2017.2696121
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7906545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7906545</ieee_id><doaj_id>oai_doaj_org_article_8f8fb99c2189415aa2c8805b064d9610</doaj_id><sourcerecordid>2455943908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-10fa47518cd2ff124cb3fd7c5f14e1b18ea35d64006850fdb853c446668c203b3</originalsourceid><addsrcrecordid>eNpVkM1uwjAQhKOqlYooT8AlUs-h69_Yx4jSFgmJQ9qz5Th2FAQJdcyBt69pEGp9WWs1M7v7JckcwQIhkC_FcrkqywUGlC8wlxxhdJdMMOIyI4zw-z__x2Q2DDuIT8QWyydJUR60D2lxag62Czq0fZdurPZd2zWp7tLtMbQHvU9fddD_VWXwOtjm_JQ8OL0f7Oxap8nX2-pz-ZFttu_rZbHJDAURMgRO05whYWrsHMLUVMTVuWEOUYsqJKwmrOYUgAsGrq4EI4ZSzrkwGEhFpsl6zK17vVNHH9fyZ9XrVv02et-oeElr9lYJJ1wlpcFISIqY1tgIAawCTuvIB2LW85h19P33yQ5B7fqT7-L6ClPGJCUSRFSRUWV8PwzeuttUBOqCXo3o1QW9uqKPrvnoaq21N0cugTPKyA8C932T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455943908</pqid></control><display><type>article</type><title>Smart Augmentation Learning an Optimal Data Augmentation Strategy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lemley, Joseph ; Bazrafkan, Shabab ; Corcoran, Peter</creator><creatorcontrib>Lemley, Joseph ; Bazrafkan, Shabab ; Corcoran, Peter</creatorcontrib><description>A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2696121</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Biological neural networks ; computer vision supervised learning ; Data augmentation ; Data models ; Electronic mail ; image databases ; Informatics ; Machine learning ; machine learning algorithms ; Neural networks ; Training</subject><ispartof>IEEE access, 2017, Vol.5, p.5858-5869</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-10fa47518cd2ff124cb3fd7c5f14e1b18ea35d64006850fdb853c446668c203b3</citedby><cites>FETCH-LOGICAL-c408t-10fa47518cd2ff124cb3fd7c5f14e1b18ea35d64006850fdb853c446668c203b3</cites><orcidid>0000-0002-0595-2313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7906545$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lemley, Joseph</creatorcontrib><creatorcontrib>Bazrafkan, Shabab</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><title>Smart Augmentation Learning an Optimal Data Augmentation Strategy</title><title>IEEE access</title><addtitle>Access</addtitle><description>A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>computer vision supervised learning</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Electronic mail</subject><subject>image databases</subject><subject>Informatics</subject><subject>Machine learning</subject><subject>machine learning algorithms</subject><subject>Neural networks</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkM1uwjAQhKOqlYooT8AlUs-h69_Yx4jSFgmJQ9qz5Th2FAQJdcyBt69pEGp9WWs1M7v7JckcwQIhkC_FcrkqywUGlC8wlxxhdJdMMOIyI4zw-z__x2Q2DDuIT8QWyydJUR60D2lxag62Czq0fZdurPZd2zWp7tLtMbQHvU9fddD_VWXwOtjm_JQ8OL0f7Oxap8nX2-pz-ZFttu_rZbHJDAURMgRO05whYWrsHMLUVMTVuWEOUYsqJKwmrOYUgAsGrq4EI4ZSzrkwGEhFpsl6zK17vVNHH9fyZ9XrVv02et-oeElr9lYJJ1wlpcFISIqY1tgIAawCTuvIB2LW85h19P33yQ5B7fqT7-L6ClPGJCUSRFSRUWV8PwzeuttUBOqCXo3o1QW9uqKPrvnoaq21N0cugTPKyA8C932T</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Lemley, Joseph</creator><creator>Bazrafkan, Shabab</creator><creator>Corcoran, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0595-2313</orcidid></search><sort><creationdate>2017</creationdate><title>Smart Augmentation Learning an Optimal Data Augmentation Strategy</title><author>Lemley, Joseph ; Bazrafkan, Shabab ; Corcoran, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-10fa47518cd2ff124cb3fd7c5f14e1b18ea35d64006850fdb853c446668c203b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>computer vision supervised learning</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Electronic mail</topic><topic>image databases</topic><topic>Informatics</topic><topic>Machine learning</topic><topic>machine learning algorithms</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemley, Joseph</creatorcontrib><creatorcontrib>Bazrafkan, Shabab</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemley, Joseph</au><au>Bazrafkan, Shabab</au><au>Corcoran, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Augmentation Learning an Optimal Data Augmentation Strategy</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017</date><risdate>2017</risdate><volume>5</volume><spage>5858</spage><epage>5869</epage><pages>5858-5869</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2696121</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0595-2313</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017, Vol.5, p.5858-5869
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_7906545
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial intelligence
Artificial neural networks
Biological neural networks
computer vision supervised learning
Data augmentation
Data models
Electronic mail
image databases
Informatics
Machine learning
machine learning algorithms
Neural networks
Training
title Smart Augmentation Learning an Optimal Data Augmentation Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Augmentation%20Learning%20an%20Optimal%20Data%20Augmentation%20Strategy&rft.jtitle=IEEE%20access&rft.au=Lemley,%20Joseph&rft.date=2017&rft.volume=5&rft.spage=5858&rft.epage=5869&rft.pages=5858-5869&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2696121&rft_dat=%3Cproquest_ieee_%3E2455943908%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455943908&rft_id=info:pmid/&rft_ieee_id=7906545&rft_doaj_id=oai_doaj_org_article_8f8fb99c2189415aa2c8805b064d9610&rfr_iscdi=true