Smart Augmentation Learning an Optimal Data Augmentation Strategy
A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an...
Gespeichert in:
Veröffentlicht in: | IEEE access 2017, Vol.5, p.5858-5869 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5869 |
---|---|
container_issue | |
container_start_page | 5858 |
container_title | IEEE access |
container_volume | 5 |
creator | Lemley, Joseph Bazrafkan, Shabab Corcoran, Peter |
description | A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases. |
doi_str_mv | 10.1109/ACCESS.2017.2696121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7906545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7906545</ieee_id><doaj_id>oai_doaj_org_article_8f8fb99c2189415aa2c8805b064d9610</doaj_id><sourcerecordid>2455943908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-10fa47518cd2ff124cb3fd7c5f14e1b18ea35d64006850fdb853c446668c203b3</originalsourceid><addsrcrecordid>eNpVkM1uwjAQhKOqlYooT8AlUs-h69_Yx4jSFgmJQ9qz5Th2FAQJdcyBt69pEGp9WWs1M7v7JckcwQIhkC_FcrkqywUGlC8wlxxhdJdMMOIyI4zw-z__x2Q2DDuIT8QWyydJUR60D2lxag62Czq0fZdurPZd2zWp7tLtMbQHvU9fddD_VWXwOtjm_JQ8OL0f7Oxap8nX2-pz-ZFttu_rZbHJDAURMgRO05whYWrsHMLUVMTVuWEOUYsqJKwmrOYUgAsGrq4EI4ZSzrkwGEhFpsl6zK17vVNHH9fyZ9XrVv02et-oeElr9lYJJ1wlpcFISIqY1tgIAawCTuvIB2LW85h19P33yQ5B7fqT7-L6ClPGJCUSRFSRUWV8PwzeuttUBOqCXo3o1QW9uqKPrvnoaq21N0cugTPKyA8C932T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455943908</pqid></control><display><type>article</type><title>Smart Augmentation Learning an Optimal Data Augmentation Strategy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lemley, Joseph ; Bazrafkan, Shabab ; Corcoran, Peter</creator><creatorcontrib>Lemley, Joseph ; Bazrafkan, Shabab ; Corcoran, Peter</creatorcontrib><description>A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2696121</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Biological neural networks ; computer vision supervised learning ; Data augmentation ; Data models ; Electronic mail ; image databases ; Informatics ; Machine learning ; machine learning algorithms ; Neural networks ; Training</subject><ispartof>IEEE access, 2017, Vol.5, p.5858-5869</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-10fa47518cd2ff124cb3fd7c5f14e1b18ea35d64006850fdb853c446668c203b3</citedby><cites>FETCH-LOGICAL-c408t-10fa47518cd2ff124cb3fd7c5f14e1b18ea35d64006850fdb853c446668c203b3</cites><orcidid>0000-0002-0595-2313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7906545$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lemley, Joseph</creatorcontrib><creatorcontrib>Bazrafkan, Shabab</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><title>Smart Augmentation Learning an Optimal Data Augmentation Strategy</title><title>IEEE access</title><addtitle>Access</addtitle><description>A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>computer vision supervised learning</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Electronic mail</subject><subject>image databases</subject><subject>Informatics</subject><subject>Machine learning</subject><subject>machine learning algorithms</subject><subject>Neural networks</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkM1uwjAQhKOqlYooT8AlUs-h69_Yx4jSFgmJQ9qz5Th2FAQJdcyBt69pEGp9WWs1M7v7JckcwQIhkC_FcrkqywUGlC8wlxxhdJdMMOIyI4zw-z__x2Q2DDuIT8QWyydJUR60D2lxag62Czq0fZdurPZd2zWp7tLtMbQHvU9fddD_VWXwOtjm_JQ8OL0f7Oxap8nX2-pz-ZFttu_rZbHJDAURMgRO05whYWrsHMLUVMTVuWEOUYsqJKwmrOYUgAsGrq4EI4ZSzrkwGEhFpsl6zK17vVNHH9fyZ9XrVv02et-oeElr9lYJJ1wlpcFISIqY1tgIAawCTuvIB2LW85h19P33yQ5B7fqT7-L6ClPGJCUSRFSRUWV8PwzeuttUBOqCXo3o1QW9uqKPrvnoaq21N0cugTPKyA8C932T</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Lemley, Joseph</creator><creator>Bazrafkan, Shabab</creator><creator>Corcoran, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0595-2313</orcidid></search><sort><creationdate>2017</creationdate><title>Smart Augmentation Learning an Optimal Data Augmentation Strategy</title><author>Lemley, Joseph ; Bazrafkan, Shabab ; Corcoran, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-10fa47518cd2ff124cb3fd7c5f14e1b18ea35d64006850fdb853c446668c203b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>computer vision supervised learning</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Electronic mail</topic><topic>image databases</topic><topic>Informatics</topic><topic>Machine learning</topic><topic>machine learning algorithms</topic><topic>Neural networks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemley, Joseph</creatorcontrib><creatorcontrib>Bazrafkan, Shabab</creatorcontrib><creatorcontrib>Corcoran, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemley, Joseph</au><au>Bazrafkan, Shabab</au><au>Corcoran, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Augmentation Learning an Optimal Data Augmentation Strategy</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017</date><risdate>2017</risdate><volume>5</volume><spage>5858</spage><epage>5869</epage><pages>5858-5869</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A recurring problem faced when training neural networks is that there is typically not enough data to maximize the generalization capability of deep neural networks. There are many techniques to address this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate augmented data during the training process of a target network in a way that reduces that networks loss. This allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition, it has shown potential to achieve similar or improved performance levels with significantly smaller network sizes in a number of tested cases.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2696121</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0595-2313</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2017, Vol.5, p.5858-5869 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_7906545 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial intelligence Artificial neural networks Biological neural networks computer vision supervised learning Data augmentation Data models Electronic mail image databases Informatics Machine learning machine learning algorithms Neural networks Training |
title | Smart Augmentation Learning an Optimal Data Augmentation Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Augmentation%20Learning%20an%20Optimal%20Data%20Augmentation%20Strategy&rft.jtitle=IEEE%20access&rft.au=Lemley,%20Joseph&rft.date=2017&rft.volume=5&rft.spage=5858&rft.epage=5869&rft.pages=5858-5869&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2696121&rft_dat=%3Cproquest_ieee_%3E2455943908%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455943908&rft_id=info:pmid/&rft_ieee_id=7906545&rft_doaj_id=oai_doaj_org_article_8f8fb99c2189415aa2c8805b064d9610&rfr_iscdi=true |