Supervised fuzzy clustering for rule extraction

The paper is concerned with the application of orthogonal transforms and fuzzy clustering to the extraction of fuzzy rules from data. It is proposed to use the orthogonal least squares method to supervise the progress of the fuzzy clustering algorithm and remove clusters of less importance with resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Setnes, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1274 vol.3
container_issue
container_start_page 1270
container_title
container_volume 3
creator Setnes, M.
description The paper is concerned with the application of orthogonal transforms and fuzzy clustering to the extraction of fuzzy rules from data. It is proposed to use the orthogonal least squares method to supervise the progress of the fuzzy clustering algorithm and remove clusters of less importance with respect to fitting the data. Clustering takes place in the product space of systems in and outputs, and each cluster corresponds to a fuzzy IF-THEN rule. By initializing the clustering with an overestimated number of clusters, and subsequently remove less important clusters (rules) as the clustering progresses, it is sought to obtain a suitable partition of the data in an automated. The approach is studied for the fuzzy c-means algorithm and applied to a function approximation example known from the literature.
doi_str_mv 10.1109/FUZZY.1999.790084
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_790084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>790084</ieee_id><sourcerecordid>790084</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1304-177b0376efabb7f036eee9e2dccb4886061181268dfba2000940fea15883ff8f3</originalsourceid><addsrcrecordid>eNotT8FKw0AUXFDB0uYD9JQfSPpedrP79ijFqlDwYHuwl7JJ3spKbMsmEduvN1iHgbnMDDNC3CHkiGDny812-56jtTY3FoDUlUisIRgpSwXaXIvJ6KPMlKRuRdJ1nzDCKlSlmYj523Dk-B06blI_nM-ntG6HrucY9h-pP8Q0Di2n_NNHV_fhsJ-JG-_ajpN_nYrN8nG9eM5Wr08vi4dVFlCCytCYCqTR7F1VGQ9SM7PloqnrShFp0IiEhabGV6742wOeHZZE0nvyciruL71hDO6OMXy5eNpdHspffFpEtg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Supervised fuzzy clustering for rule extraction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Setnes, M.</creator><creatorcontrib>Setnes, M.</creatorcontrib><description>The paper is concerned with the application of orthogonal transforms and fuzzy clustering to the extraction of fuzzy rules from data. It is proposed to use the orthogonal least squares method to supervise the progress of the fuzzy clustering algorithm and remove clusters of less importance with respect to fitting the data. Clustering takes place in the product space of systems in and outputs, and each cluster corresponds to a fuzzy IF-THEN rule. By initializing the clustering with an overestimated number of clusters, and subsequently remove less important clusters (rules) as the clustering progresses, it is sought to obtain a suitable partition of the data in an automated. The approach is studied for the fuzzy c-means algorithm and applied to a function approximation example known from the literature.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9780780354067</identifier><identifier>ISBN: 0780354060</identifier><identifier>DOI: 10.1109/FUZZY.1999.790084</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation algorithms ; Clustering algorithms ; Data mining ; Fuzzy systems ; Humans ; Laboratories ; Linear regression ; Partitioning algorithms ; Space technology ; State-space methods</subject><ispartof>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.3, p.1270-1274 vol.3</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/790084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/790084$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Setnes, M.</creatorcontrib><title>Supervised fuzzy clustering for rule extraction</title><title>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</title><addtitle>FUZZY</addtitle><description>The paper is concerned with the application of orthogonal transforms and fuzzy clustering to the extraction of fuzzy rules from data. It is proposed to use the orthogonal least squares method to supervise the progress of the fuzzy clustering algorithm and remove clusters of less importance with respect to fitting the data. Clustering takes place in the product space of systems in and outputs, and each cluster corresponds to a fuzzy IF-THEN rule. By initializing the clustering with an overestimated number of clusters, and subsequently remove less important clusters (rules) as the clustering progresses, it is sought to obtain a suitable partition of the data in an automated. The approach is studied for the fuzzy c-means algorithm and applied to a function approximation example known from the literature.</description><subject>Approximation algorithms</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>Fuzzy systems</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Linear regression</subject><subject>Partitioning algorithms</subject><subject>Space technology</subject><subject>State-space methods</subject><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT8FKw0AUXFDB0uYD9JQfSPpedrP79ijFqlDwYHuwl7JJ3spKbMsmEduvN1iHgbnMDDNC3CHkiGDny812-56jtTY3FoDUlUisIRgpSwXaXIvJ6KPMlKRuRdJ1nzDCKlSlmYj523Dk-B06blI_nM-ntG6HrucY9h-pP8Q0Di2n_NNHV_fhsJ-JG-_ajpN_nYrN8nG9eM5Wr08vi4dVFlCCytCYCqTR7F1VGQ9SM7PloqnrShFp0IiEhabGV6742wOeHZZE0nvyciruL71hDO6OMXy5eNpdHspffFpEtg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Setnes, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Supervised fuzzy clustering for rule extraction</title><author>Setnes, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1304-177b0376efabb7f036eee9e2dccb4886061181268dfba2000940fea15883ff8f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Approximation algorithms</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>Fuzzy systems</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Linear regression</topic><topic>Partitioning algorithms</topic><topic>Space technology</topic><topic>State-space methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Setnes, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Setnes, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Supervised fuzzy clustering for rule extraction</atitle><btitle>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</btitle><stitle>FUZZY</stitle><date>1999</date><risdate>1999</risdate><volume>3</volume><spage>1270</spage><epage>1274 vol.3</epage><pages>1270-1274 vol.3</pages><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><abstract>The paper is concerned with the application of orthogonal transforms and fuzzy clustering to the extraction of fuzzy rules from data. It is proposed to use the orthogonal least squares method to supervise the progress of the fuzzy clustering algorithm and remove clusters of less importance with respect to fitting the data. Clustering takes place in the product space of systems in and outputs, and each cluster corresponds to a fuzzy IF-THEN rule. By initializing the clustering with an overestimated number of clusters, and subsequently remove less important clusters (rules) as the clustering progresses, it is sought to obtain a suitable partition of the data in an automated. The approach is studied for the fuzzy c-means algorithm and applied to a function approximation example known from the literature.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.1999.790084</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.3, p.1270-1274 vol.3
issn 1098-7584
language eng
recordid cdi_ieee_primary_790084
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation algorithms
Clustering algorithms
Data mining
Fuzzy systems
Humans
Laboratories
Linear regression
Partitioning algorithms
Space technology
State-space methods
title Supervised fuzzy clustering for rule extraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A57%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Supervised%20fuzzy%20clustering%20for%20rule%20extraction&rft.btitle=FUZZ-IEEE'99.%201999%20IEEE%20International%20Fuzzy%20Systems.%20Conference%20Proceedings%20(Cat.%20No.99CH36315)&rft.au=Setnes,%20M.&rft.date=1999&rft.volume=3&rft.spage=1270&rft.epage=1274%20vol.3&rft.pages=1270-1274%20vol.3&rft.issn=1098-7584&rft.isbn=9780780354067&rft.isbn_list=0780354060&rft_id=info:doi/10.1109/FUZZY.1999.790084&rft_dat=%3Cieee_6IE%3E790084%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=790084&rfr_iscdi=true