Efficient fuzzy rule generation based on fuzzy decision tree for data mining
In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effective...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1228 vol.3 |
---|---|
container_issue | |
container_start_page | 1223 |
container_title | |
container_volume | 3 |
creator | Myung Won Kim Joong Geun Lee Changwoo Min |
description | In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of nonaxis-parallel decision boundaries, which are difficult to do using attribute-based classification methods. In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply the genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5. |
doi_str_mv | 10.1109/FUZZY.1999.790076 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_790076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>790076</ieee_id><sourcerecordid>790076</sourcerecordid><originalsourceid>FETCH-ieee_primary_7900763</originalsourceid><addsrcrecordid>eNp9Tr0OgjAYbKImEuUBdOoLgG34KZ0NxMFRB1lIha-kBoppYYCnF4Ozl0vucnfDIXSgxKeU8FN2z_OHTznnPuOEsHiFXM4SMjOIQhKzNXLmXeKxKAm3yLX2RWaEUciSyEHXVEpVKtA9lsM0jdgMDeAaNBjRq07jp7BQ4dksdQWlst-8NwBYdgZXohe4VVrpeo82UjQW3J_u0DFLb-eLpwCgeBvVCjMWy83gb_kB955AAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient fuzzy rule generation based on fuzzy decision tree for data mining</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Myung Won Kim ; Joong Geun Lee ; Changwoo Min</creator><creatorcontrib>Myung Won Kim ; Joong Geun Lee ; Changwoo Min</creatorcontrib><description>In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of nonaxis-parallel decision boundaries, which are difficult to do using attribute-based classification methods. In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply the genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9780780354067</identifier><identifier>ISBN: 0780354060</identifier><identifier>DOI: 10.1109/FUZZY.1999.790076</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data analysis ; Data mining ; Decision trees ; Fuzzy sets ; Histograms ; Humans ; Machine learning algorithms ; Power generation</subject><ispartof>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.3, p.1223-1228 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/790076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/790076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Myung Won Kim</creatorcontrib><creatorcontrib>Joong Geun Lee</creatorcontrib><creatorcontrib>Changwoo Min</creatorcontrib><title>Efficient fuzzy rule generation based on fuzzy decision tree for data mining</title><title>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</title><addtitle>FUZZY</addtitle><description>In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of nonaxis-parallel decision boundaries, which are difficult to do using attribute-based classification methods. In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply the genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.</description><subject>Algorithm design and analysis</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Fuzzy sets</subject><subject>Histograms</subject><subject>Humans</subject><subject>Machine learning algorithms</subject><subject>Power generation</subject><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9Tr0OgjAYbKImEuUBdOoLgG34KZ0NxMFRB1lIha-kBoppYYCnF4Ozl0vucnfDIXSgxKeU8FN2z_OHTznnPuOEsHiFXM4SMjOIQhKzNXLmXeKxKAm3yLX2RWaEUciSyEHXVEpVKtA9lsM0jdgMDeAaNBjRq07jp7BQ4dksdQWlst-8NwBYdgZXohe4VVrpeo82UjQW3J_u0DFLb-eLpwCgeBvVCjMWy83gb_kB955AAg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Myung Won Kim</creator><creator>Joong Geun Lee</creator><creator>Changwoo Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Efficient fuzzy rule generation based on fuzzy decision tree for data mining</title><author>Myung Won Kim ; Joong Geun Lee ; Changwoo Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_7900763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithm design and analysis</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Fuzzy sets</topic><topic>Histograms</topic><topic>Humans</topic><topic>Machine learning algorithms</topic><topic>Power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Myung Won Kim</creatorcontrib><creatorcontrib>Joong Geun Lee</creatorcontrib><creatorcontrib>Changwoo Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Myung Won Kim</au><au>Joong Geun Lee</au><au>Changwoo Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient fuzzy rule generation based on fuzzy decision tree for data mining</atitle><btitle>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</btitle><stitle>FUZZY</stitle><date>1999</date><risdate>1999</risdate><volume>3</volume><spage>1223</spage><epage>1228 vol.3</epage><pages>1223-1228 vol.3</pages><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><abstract>In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of nonaxis-parallel decision boundaries, which are difficult to do using attribute-based classification methods. In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply the genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.1999.790076</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7584 |
ispartof | FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.3, p.1223-1228 vol.3 |
issn | 1098-7584 |
language | eng |
recordid | cdi_ieee_primary_790076 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Data analysis Data mining Decision trees Fuzzy sets Histograms Humans Machine learning algorithms Power generation |
title | Efficient fuzzy rule generation based on fuzzy decision tree for data mining |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20fuzzy%20rule%20generation%20based%20on%20fuzzy%20decision%20tree%20for%20data%20mining&rft.btitle=FUZZ-IEEE'99.%201999%20IEEE%20International%20Fuzzy%20Systems.%20Conference%20Proceedings%20(Cat.%20No.99CH36315)&rft.au=Myung%20Won%20Kim&rft.date=1999&rft.volume=3&rft.spage=1223&rft.epage=1228%20vol.3&rft.pages=1223-1228%20vol.3&rft.issn=1098-7584&rft.isbn=9780780354067&rft.isbn_list=0780354060&rft_id=info:doi/10.1109/FUZZY.1999.790076&rft_dat=%3Cieee_6IE%3E790076%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=790076&rfr_iscdi=true |