Efficient fuzzy rule generation based on fuzzy decision tree for data mining

In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Myung Won Kim, Joong Geun Lee, Changwoo Min
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1228 vol.3
container_issue
container_start_page 1223
container_title
container_volume 3
creator Myung Won Kim
Joong Geun Lee
Changwoo Min
description In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of nonaxis-parallel decision boundaries, which are difficult to do using attribute-based classification methods. In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply the genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.
doi_str_mv 10.1109/FUZZY.1999.790076
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_790076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>790076</ieee_id><sourcerecordid>790076</sourcerecordid><originalsourceid>FETCH-ieee_primary_7900763</originalsourceid><addsrcrecordid>eNp9Tr0OgjAYbKImEuUBdOoLgG34KZ0NxMFRB1lIha-kBoppYYCnF4Ozl0vucnfDIXSgxKeU8FN2z_OHTznnPuOEsHiFXM4SMjOIQhKzNXLmXeKxKAm3yLX2RWaEUciSyEHXVEpVKtA9lsM0jdgMDeAaNBjRq07jp7BQ4dksdQWlst-8NwBYdgZXohe4VVrpeo82UjQW3J_u0DFLb-eLpwCgeBvVCjMWy83gb_kB955AAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient fuzzy rule generation based on fuzzy decision tree for data mining</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Myung Won Kim ; Joong Geun Lee ; Changwoo Min</creator><creatorcontrib>Myung Won Kim ; Joong Geun Lee ; Changwoo Min</creatorcontrib><description>In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of nonaxis-parallel decision boundaries, which are difficult to do using attribute-based classification methods. In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply the genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9780780354067</identifier><identifier>ISBN: 0780354060</identifier><identifier>DOI: 10.1109/FUZZY.1999.790076</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Data analysis ; Data mining ; Decision trees ; Fuzzy sets ; Histograms ; Humans ; Machine learning algorithms ; Power generation</subject><ispartof>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.3, p.1223-1228 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/790076$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/790076$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Myung Won Kim</creatorcontrib><creatorcontrib>Joong Geun Lee</creatorcontrib><creatorcontrib>Changwoo Min</creatorcontrib><title>Efficient fuzzy rule generation based on fuzzy decision tree for data mining</title><title>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</title><addtitle>FUZZY</addtitle><description>In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of nonaxis-parallel decision boundaries, which are difficult to do using attribute-based classification methods. In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply the genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.</description><subject>Algorithm design and analysis</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>Fuzzy sets</subject><subject>Histograms</subject><subject>Humans</subject><subject>Machine learning algorithms</subject><subject>Power generation</subject><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9Tr0OgjAYbKImEuUBdOoLgG34KZ0NxMFRB1lIha-kBoppYYCnF4Ozl0vucnfDIXSgxKeU8FN2z_OHTznnPuOEsHiFXM4SMjOIQhKzNXLmXeKxKAm3yLX2RWaEUciSyEHXVEpVKtA9lsM0jdgMDeAaNBjRq07jp7BQ4dksdQWlst-8NwBYdgZXohe4VVrpeo82UjQW3J_u0DFLb-eLpwCgeBvVCjMWy83gb_kB955AAg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Myung Won Kim</creator><creator>Joong Geun Lee</creator><creator>Changwoo Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Efficient fuzzy rule generation based on fuzzy decision tree for data mining</title><author>Myung Won Kim ; Joong Geun Lee ; Changwoo Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_7900763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithm design and analysis</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>Fuzzy sets</topic><topic>Histograms</topic><topic>Humans</topic><topic>Machine learning algorithms</topic><topic>Power generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Myung Won Kim</creatorcontrib><creatorcontrib>Joong Geun Lee</creatorcontrib><creatorcontrib>Changwoo Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Myung Won Kim</au><au>Joong Geun Lee</au><au>Changwoo Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient fuzzy rule generation based on fuzzy decision tree for data mining</atitle><btitle>FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315)</btitle><stitle>FUZZY</stitle><date>1999</date><risdate>1999</risdate><volume>3</volume><spage>1223</spage><epage>1228 vol.3</epage><pages>1223-1228 vol.3</pages><issn>1098-7584</issn><isbn>9780780354067</isbn><isbn>0780354060</isbn><abstract>In this paper, we propose an efficient fuzzy rule generation algorithm based on fuzzy decision tree for data mining. We combine the comprehensibility of rules generated based on decision tree such as ID3 and C4.5 and the expressive power of fuzzy sets. Particularly, fuzzy rules allow us to effectively classify patterns of nonaxis-parallel decision boundaries, which are difficult to do using attribute-based classification methods. In our algorithm we first determine an appropriate set of membership functions for each attribute of data using histogram analysis. Given a set of membership functions then we construct a fuzzy decision tree in a similar way to that of ID3 and C4.5. We also apply the genetic algorithm to tune the initial set of membership functions. We have experimented our algorithm with several benchmark data sets. The experiment results show that our method is more efficient in performance and comprehensibility of rules compared with other methods including C4.5.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.1999.790076</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315), 1999, Vol.3, p.1223-1228 vol.3
issn 1098-7584
language eng
recordid cdi_ieee_primary_790076
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Data analysis
Data mining
Decision trees
Fuzzy sets
Histograms
Humans
Machine learning algorithms
Power generation
title Efficient fuzzy rule generation based on fuzzy decision tree for data mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A16%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20fuzzy%20rule%20generation%20based%20on%20fuzzy%20decision%20tree%20for%20data%20mining&rft.btitle=FUZZ-IEEE'99.%201999%20IEEE%20International%20Fuzzy%20Systems.%20Conference%20Proceedings%20(Cat.%20No.99CH36315)&rft.au=Myung%20Won%20Kim&rft.date=1999&rft.volume=3&rft.spage=1223&rft.epage=1228%20vol.3&rft.pages=1223-1228%20vol.3&rft.issn=1098-7584&rft.isbn=9780780354067&rft.isbn_list=0780354060&rft_id=info:doi/10.1109/FUZZY.1999.790076&rft_dat=%3Cieee_6IE%3E790076%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=790076&rfr_iscdi=true