Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy
Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2017-08, Vol.64 (8), p.6742-6751 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6751 |
---|---|
container_issue | 8 |
container_start_page | 6742 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 64 |
creator | Mu, Chaoxu Tang, Yufei He, Haibo |
description | Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security. In this paper, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for the power system frequency regulation. An improved sliding mode control (SMC) is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The adaptive dynamic programming strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to the real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization-based SMC scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multiarea benchmark systems, and comparative results illustrate the favorable performance of the proposed adaptive approach for the frequency regulation under load disturbances and parameter uncertainties. |
doi_str_mv | 10.1109/TIE.2017.2694396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7900419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7900419</ieee_id><sourcerecordid>2174415937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-ed79b87b2c05536987d13413f8e36e94be8df133d3f0ab6cb24594072636353e3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvgpcFz6m7md1s9lhqq4WIQus5JNlJSGmzcZNW8u_d0OJpDvPem3kfIY-czThn-mW7Xs5CxtUsjLQAHV2RCZdSBVqL-JpMWKjigDER3ZK7rtsxxoXkckLa9aF19oSGbva1qZuKfliD9BW7umpoaR1NbGboyuHPEZtioAvb9M7uqS3pl_1FRzdD1-OBrpseK5f1Pilr6NxkbV-fkCaYuWaM3fTjshruyU2Z7Tt8uMwp-V4tt4v3IPl8Wy_mSVAAQB-gUTqPVR4WTEqIdKwMB8GhjBEi1CLH2JQcwEDJsjwq8lBILZgKI4hAAsKUPJ9zfT3_etenO3t0jT-ZhlwJwaUG5VXsrCqc7TqHZdq6-pC5IeUsHbmmnms6ck0vXL3l6WypEfFfrrSHyzX8AbcYc5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174415937</pqid></control><display><type>article</type><title>Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy</title><source>IEEE Electronic Library (IEL)</source><creator>Mu, Chaoxu ; Tang, Yufei ; He, Haibo</creator><creatorcontrib>Mu, Chaoxu ; Tang, Yufei ; He, Haibo</creatorcontrib><description>Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security. In this paper, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for the power system frequency regulation. An improved sliding mode control (SMC) is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The adaptive dynamic programming strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to the real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization-based SMC scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multiarea benchmark systems, and comparative results illustrate the favorable performance of the proposed adaptive approach for the frequency regulation under load disturbances and parameter uncertainties.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2694396</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Adaptive dynamic programming (ADP) ; Computer simulation ; disturbances and uncertainties ; Dynamic programming ; Electric power distribution ; Frequency control ; load frequency control (LFC) ; Load modeling ; Mathematical models ; Parameter uncertainty ; Particle swarm optimization ; particle swarm optimization (PSO) ; Power system stability ; Reliability analysis ; Sliding mode control ; sliding mode control (SMC) ; Stability analysis ; Strategy ; Synchronism ; Systems stability ; Uncertain systems ; Uncertainty ; Uncertainty analysis</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-08, Vol.64 (8), p.6742-6751</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-ed79b87b2c05536987d13413f8e36e94be8df133d3f0ab6cb24594072636353e3</citedby><cites>FETCH-LOGICAL-c333t-ed79b87b2c05536987d13413f8e36e94be8df133d3f0ab6cb24594072636353e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7900419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7900419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu, Chaoxu</creatorcontrib><creatorcontrib>Tang, Yufei</creatorcontrib><creatorcontrib>He, Haibo</creatorcontrib><title>Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security. In this paper, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for the power system frequency regulation. An improved sliding mode control (SMC) is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The adaptive dynamic programming strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to the real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization-based SMC scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multiarea benchmark systems, and comparative results illustrate the favorable performance of the proposed adaptive approach for the frequency regulation under load disturbances and parameter uncertainties.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Adaptive dynamic programming (ADP)</subject><subject>Computer simulation</subject><subject>disturbances and uncertainties</subject><subject>Dynamic programming</subject><subject>Electric power distribution</subject><subject>Frequency control</subject><subject>load frequency control (LFC)</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Parameter uncertainty</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Power system stability</subject><subject>Reliability analysis</subject><subject>Sliding mode control</subject><subject>sliding mode control (SMC)</subject><subject>Stability analysis</subject><subject>Strategy</subject><subject>Synchronism</subject><subject>Systems stability</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFbvgpcFz6m7md1s9lhqq4WIQus5JNlJSGmzcZNW8u_d0OJpDvPem3kfIY-czThn-mW7Xs5CxtUsjLQAHV2RCZdSBVqL-JpMWKjigDER3ZK7rtsxxoXkckLa9aF19oSGbva1qZuKfliD9BW7umpoaR1NbGboyuHPEZtioAvb9M7uqS3pl_1FRzdD1-OBrpseK5f1Pilr6NxkbV-fkCaYuWaM3fTjshruyU2Z7Tt8uMwp-V4tt4v3IPl8Wy_mSVAAQB-gUTqPVR4WTEqIdKwMB8GhjBEi1CLH2JQcwEDJsjwq8lBILZgKI4hAAsKUPJ9zfT3_etenO3t0jT-ZhlwJwaUG5VXsrCqc7TqHZdq6-pC5IeUsHbmmnms6ck0vXL3l6WypEfFfrrSHyzX8AbcYc5A</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Mu, Chaoxu</creator><creator>Tang, Yufei</creator><creator>He, Haibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201708</creationdate><title>Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy</title><author>Mu, Chaoxu ; Tang, Yufei ; He, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-ed79b87b2c05536987d13413f8e36e94be8df133d3f0ab6cb24594072636353e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Adaptive dynamic programming (ADP)</topic><topic>Computer simulation</topic><topic>disturbances and uncertainties</topic><topic>Dynamic programming</topic><topic>Electric power distribution</topic><topic>Frequency control</topic><topic>load frequency control (LFC)</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Parameter uncertainty</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Power system stability</topic><topic>Reliability analysis</topic><topic>Sliding mode control</topic><topic>sliding mode control (SMC)</topic><topic>Stability analysis</topic><topic>Strategy</topic><topic>Synchronism</topic><topic>Systems stability</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Chaoxu</creatorcontrib><creatorcontrib>Tang, Yufei</creatorcontrib><creatorcontrib>He, Haibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu, Chaoxu</au><au>Tang, Yufei</au><au>He, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-08</date><risdate>2017</risdate><volume>64</volume><issue>8</issue><spage>6742</spage><epage>6751</epage><pages>6742-6751</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security. In this paper, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for the power system frequency regulation. An improved sliding mode control (SMC) is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The adaptive dynamic programming strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to the real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization-based SMC scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multiarea benchmark systems, and comparative results illustrate the favorable performance of the proposed adaptive approach for the frequency regulation under load disturbances and parameter uncertainties.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2694396</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2017-08, Vol.64 (8), p.6742-6751 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_7900419 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive control Adaptive dynamic programming (ADP) Computer simulation disturbances and uncertainties Dynamic programming Electric power distribution Frequency control load frequency control (LFC) Load modeling Mathematical models Parameter uncertainty Particle swarm optimization particle swarm optimization (PSO) Power system stability Reliability analysis Sliding mode control sliding mode control (SMC) Stability analysis Strategy Synchronism Systems stability Uncertain systems Uncertainty Uncertainty analysis |
title | Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Sliding%20Mode%20Design%20for%20Load%20Frequency%20Control%20of%20Power%20System%20Integrated%20an%20Adaptive%20Learning%20Strategy&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Mu,%20Chaoxu&rft.date=2017-08&rft.volume=64&rft.issue=8&rft.spage=6742&rft.epage=6751&rft.pages=6742-6751&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2694396&rft_dat=%3Cproquest_RIE%3E2174415937%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174415937&rft_id=info:pmid/&rft_ieee_id=7900419&rfr_iscdi=true |