Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy

Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2017-08, Vol.64 (8), p.6742-6751
Hauptverfasser: Mu, Chaoxu, Tang, Yufei, He, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6751
container_issue 8
container_start_page 6742
container_title IEEE transactions on industrial electronics (1982)
container_volume 64
creator Mu, Chaoxu
Tang, Yufei
He, Haibo
description Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security. In this paper, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for the power system frequency regulation. An improved sliding mode control (SMC) is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The adaptive dynamic programming strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to the real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization-based SMC scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multiarea benchmark systems, and comparative results illustrate the favorable performance of the proposed adaptive approach for the frequency regulation under load disturbances and parameter uncertainties.
doi_str_mv 10.1109/TIE.2017.2694396
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7900419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7900419</ieee_id><sourcerecordid>2174415937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-ed79b87b2c05536987d13413f8e36e94be8df133d3f0ab6cb24594072636353e3</originalsourceid><addsrcrecordid>eNo9kEFLw0AQhRdRsFbvgpcFz6m7md1s9lhqq4WIQus5JNlJSGmzcZNW8u_d0OJpDvPem3kfIY-czThn-mW7Xs5CxtUsjLQAHV2RCZdSBVqL-JpMWKjigDER3ZK7rtsxxoXkckLa9aF19oSGbva1qZuKfliD9BW7umpoaR1NbGboyuHPEZtioAvb9M7uqS3pl_1FRzdD1-OBrpseK5f1Pilr6NxkbV-fkCaYuWaM3fTjshruyU2Z7Tt8uMwp-V4tt4v3IPl8Wy_mSVAAQB-gUTqPVR4WTEqIdKwMB8GhjBEi1CLH2JQcwEDJsjwq8lBILZgKI4hAAsKUPJ9zfT3_etenO3t0jT-ZhlwJwaUG5VXsrCqc7TqHZdq6-pC5IeUsHbmmnms6ck0vXL3l6WypEfFfrrSHyzX8AbcYc5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174415937</pqid></control><display><type>article</type><title>Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy</title><source>IEEE Electronic Library (IEL)</source><creator>Mu, Chaoxu ; Tang, Yufei ; He, Haibo</creator><creatorcontrib>Mu, Chaoxu ; Tang, Yufei ; He, Haibo</creatorcontrib><description>Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security. In this paper, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for the power system frequency regulation. An improved sliding mode control (SMC) is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The adaptive dynamic programming strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to the real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization-based SMC scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multiarea benchmark systems, and comparative results illustrate the favorable performance of the proposed adaptive approach for the frequency regulation under load disturbances and parameter uncertainties.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2017.2694396</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Adaptive dynamic programming (ADP) ; Computer simulation ; disturbances and uncertainties ; Dynamic programming ; Electric power distribution ; Frequency control ; load frequency control (LFC) ; Load modeling ; Mathematical models ; Parameter uncertainty ; Particle swarm optimization ; particle swarm optimization (PSO) ; Power system stability ; Reliability analysis ; Sliding mode control ; sliding mode control (SMC) ; Stability analysis ; Strategy ; Synchronism ; Systems stability ; Uncertain systems ; Uncertainty ; Uncertainty analysis</subject><ispartof>IEEE transactions on industrial electronics (1982), 2017-08, Vol.64 (8), p.6742-6751</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-ed79b87b2c05536987d13413f8e36e94be8df133d3f0ab6cb24594072636353e3</citedby><cites>FETCH-LOGICAL-c333t-ed79b87b2c05536987d13413f8e36e94be8df133d3f0ab6cb24594072636353e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7900419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7900419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu, Chaoxu</creatorcontrib><creatorcontrib>Tang, Yufei</creatorcontrib><creatorcontrib>He, Haibo</creatorcontrib><title>Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security. In this paper, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for the power system frequency regulation. An improved sliding mode control (SMC) is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The adaptive dynamic programming strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to the real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization-based SMC scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multiarea benchmark systems, and comparative results illustrate the favorable performance of the proposed adaptive approach for the frequency regulation under load disturbances and parameter uncertainties.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Adaptive dynamic programming (ADP)</subject><subject>Computer simulation</subject><subject>disturbances and uncertainties</subject><subject>Dynamic programming</subject><subject>Electric power distribution</subject><subject>Frequency control</subject><subject>load frequency control (LFC)</subject><subject>Load modeling</subject><subject>Mathematical models</subject><subject>Parameter uncertainty</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Power system stability</subject><subject>Reliability analysis</subject><subject>Sliding mode control</subject><subject>sliding mode control (SMC)</subject><subject>Stability analysis</subject><subject>Strategy</subject><subject>Synchronism</subject><subject>Systems stability</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQhRdRsFbvgpcFz6m7md1s9lhqq4WIQus5JNlJSGmzcZNW8u_d0OJpDvPem3kfIY-czThn-mW7Xs5CxtUsjLQAHV2RCZdSBVqL-JpMWKjigDER3ZK7rtsxxoXkckLa9aF19oSGbva1qZuKfliD9BW7umpoaR1NbGboyuHPEZtioAvb9M7uqS3pl_1FRzdD1-OBrpseK5f1Pilr6NxkbV-fkCaYuWaM3fTjshruyU2Z7Tt8uMwp-V4tt4v3IPl8Wy_mSVAAQB-gUTqPVR4WTEqIdKwMB8GhjBEi1CLH2JQcwEDJsjwq8lBILZgKI4hAAsKUPJ9zfT3_etenO3t0jT-ZhlwJwaUG5VXsrCqc7TqHZdq6-pC5IeUsHbmmnms6ck0vXL3l6WypEfFfrrSHyzX8AbcYc5A</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Mu, Chaoxu</creator><creator>Tang, Yufei</creator><creator>He, Haibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201708</creationdate><title>Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy</title><author>Mu, Chaoxu ; Tang, Yufei ; He, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-ed79b87b2c05536987d13413f8e36e94be8df133d3f0ab6cb24594072636353e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Adaptive dynamic programming (ADP)</topic><topic>Computer simulation</topic><topic>disturbances and uncertainties</topic><topic>Dynamic programming</topic><topic>Electric power distribution</topic><topic>Frequency control</topic><topic>load frequency control (LFC)</topic><topic>Load modeling</topic><topic>Mathematical models</topic><topic>Parameter uncertainty</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Power system stability</topic><topic>Reliability analysis</topic><topic>Sliding mode control</topic><topic>sliding mode control (SMC)</topic><topic>Stability analysis</topic><topic>Strategy</topic><topic>Synchronism</topic><topic>Systems stability</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mu, Chaoxu</creatorcontrib><creatorcontrib>Tang, Yufei</creatorcontrib><creatorcontrib>He, Haibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu, Chaoxu</au><au>Tang, Yufei</au><au>He, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2017-08</date><risdate>2017</risdate><volume>64</volume><issue>8</issue><spage>6742</spage><epage>6751</epage><pages>6742-6751</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, load frequency control (LFC) has become one of the essential challenges for power system stability and security. In this paper, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for the power system frequency regulation. An improved sliding mode control (SMC) is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The adaptive dynamic programming strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to the real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization-based SMC scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multiarea benchmark systems, and comparative results illustrate the favorable performance of the proposed adaptive approach for the frequency regulation under load disturbances and parameter uncertainties.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2017.2694396</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2017-08, Vol.64 (8), p.6742-6751
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_7900419
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive control
Adaptive dynamic programming (ADP)
Computer simulation
disturbances and uncertainties
Dynamic programming
Electric power distribution
Frequency control
load frequency control (LFC)
Load modeling
Mathematical models
Parameter uncertainty
Particle swarm optimization
particle swarm optimization (PSO)
Power system stability
Reliability analysis
Sliding mode control
sliding mode control (SMC)
Stability analysis
Strategy
Synchronism
Systems stability
Uncertain systems
Uncertainty
Uncertainty analysis
title Improved Sliding Mode Design for Load Frequency Control of Power System Integrated an Adaptive Learning Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Sliding%20Mode%20Design%20for%20Load%20Frequency%20Control%20of%20Power%20System%20Integrated%20an%20Adaptive%20Learning%20Strategy&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Mu,%20Chaoxu&rft.date=2017-08&rft.volume=64&rft.issue=8&rft.spage=6742&rft.epage=6751&rft.pages=6742-6751&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2017.2694396&rft_dat=%3Cproquest_RIE%3E2174415937%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174415937&rft_id=info:pmid/&rft_ieee_id=7900419&rfr_iscdi=true