On the Solvability of Feedback Complete Linearization of Nonlinear Stochastic Systems

In this paper, solvability of the feedback complete linearization problem for single input nonlinear stochastic systems with multidimensional plant noise has been studied. Through a new theorem, necessary and sufficient conditions for the solvability of the problem are provided. The proposed theorem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2020-03, Vol.50 (3), p.1074-1082
Hauptverfasser: Beheshtipour, Zohreh, Khaloozadeh, Hamid, Amjadifard, Roya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1082
container_issue 3
container_start_page 1074
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 50
creator Beheshtipour, Zohreh
Khaloozadeh, Hamid
Amjadifard, Roya
description In this paper, solvability of the feedback complete linearization problem for single input nonlinear stochastic systems with multidimensional plant noise has been studied. Through a new theorem, necessary and sufficient conditions for the solvability of the problem are provided. The proposed theorem recognizes the existence of the diffeomorphism and feedback law for linearizing the nonlinear stochastic system without finding them. Checking the conditions of the proposed theorem in order to recognize the solvability of the feedback complete linearization problem, needs only simple matrices multiplication instead of complete solving the problem. The previous works need to solve a set of partial differential equations to recognize the solvability of the problem. The nonlinear stochastic systems that satisfy the conditions of the proposed theorem are completely linearizable, then linear stochastic control methods can be applied to control them and more accurate results in less computation will be achieved. Two numerical examples illustrate the theoretical results.
doi_str_mv 10.1109/TSMC.2017.2689774
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7898848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7898848</ieee_id><sourcerecordid>2358911342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2d190e11b343ab2100771e75ec9b9c4205a31edc0947a8ba8f5e00bdf9e389cb3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gHhZ8Lw1k-xHcpTFqlDtYdvzkmRnaep2UzepUH-9XVt6mpfheWfgIeQe6BSAyqdl-VFMGYV8yjIh8zy5IiMGmYgZ4-z6kiG7JRPvN5RSYCLjNBuR1aKLwhqj0rU_StvWhkPkmmiGWGtlvqLCbXctBozmtkPV218VrOsG5NN17f8uKoMza-WDNVF58AG3_o7cNKr1ODnPMVnNXpbFWzxfvL4Xz_PYMMlDzGqQFAE0T7jSDCjNc8A8RSO1NAmjqeKAtaEyyZXQSjQpUqrrRiIX0mg-Jo-nu7vefe_Rh2rj9n13fFkxngoJwBN2pOBEmd5532NT7Xq7Vf2hAloNAqtBYDUIrM4Cj52HU8ci4oXPhRQiEfwPgSxsPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358911342</pqid></control><display><type>article</type><title>On the Solvability of Feedback Complete Linearization of Nonlinear Stochastic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Beheshtipour, Zohreh ; Khaloozadeh, Hamid ; Amjadifard, Roya</creator><creatorcontrib>Beheshtipour, Zohreh ; Khaloozadeh, Hamid ; Amjadifard, Roya</creatorcontrib><description>In this paper, solvability of the feedback complete linearization problem for single input nonlinear stochastic systems with multidimensional plant noise has been studied. Through a new theorem, necessary and sufficient conditions for the solvability of the problem are provided. The proposed theorem recognizes the existence of the diffeomorphism and feedback law for linearizing the nonlinear stochastic system without finding them. Checking the conditions of the proposed theorem in order to recognize the solvability of the feedback complete linearization problem, needs only simple matrices multiplication instead of complete solving the problem. The previous works need to solve a set of partial differential equations to recognize the solvability of the problem. The nonlinear stochastic systems that satisfy the conditions of the proposed theorem are completely linearizable, then linear stochastic control methods can be applied to control them and more accurate results in less computation will be achieved. Two numerical examples illustrate the theoretical results.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2017.2689774</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive systems ; Control methods ; Differential geometry ; Ear ; Existence theorems ; Feedback ; feedback complete linearization ; Isomorphism ; Linearization ; Multiplication ; nonlinear stochastic systems ; Nonlinear systems ; Optimal control ; Partial differential equations ; Stochastic processes ; Stochastic systems ; Theorems ; Transforms</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2020-03, Vol.50 (3), p.1074-1082</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2d190e11b343ab2100771e75ec9b9c4205a31edc0947a8ba8f5e00bdf9e389cb3</citedby><cites>FETCH-LOGICAL-c293t-2d190e11b343ab2100771e75ec9b9c4205a31edc0947a8ba8f5e00bdf9e389cb3</cites><orcidid>0000-0002-6948-8898 ; 0000-0002-1870-6349</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7898848$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7898848$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Beheshtipour, Zohreh</creatorcontrib><creatorcontrib>Khaloozadeh, Hamid</creatorcontrib><creatorcontrib>Amjadifard, Roya</creatorcontrib><title>On the Solvability of Feedback Complete Linearization of Nonlinear Stochastic Systems</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>In this paper, solvability of the feedback complete linearization problem for single input nonlinear stochastic systems with multidimensional plant noise has been studied. Through a new theorem, necessary and sufficient conditions for the solvability of the problem are provided. The proposed theorem recognizes the existence of the diffeomorphism and feedback law for linearizing the nonlinear stochastic system without finding them. Checking the conditions of the proposed theorem in order to recognize the solvability of the feedback complete linearization problem, needs only simple matrices multiplication instead of complete solving the problem. The previous works need to solve a set of partial differential equations to recognize the solvability of the problem. The nonlinear stochastic systems that satisfy the conditions of the proposed theorem are completely linearizable, then linear stochastic control methods can be applied to control them and more accurate results in less computation will be achieved. Two numerical examples illustrate the theoretical results.</description><subject>Adaptive systems</subject><subject>Control methods</subject><subject>Differential geometry</subject><subject>Ear</subject><subject>Existence theorems</subject><subject>Feedback</subject><subject>feedback complete linearization</subject><subject>Isomorphism</subject><subject>Linearization</subject><subject>Multiplication</subject><subject>nonlinear stochastic systems</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Partial differential equations</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Theorems</subject><subject>Transforms</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWGp_gHhZ8Lw1k-xHcpTFqlDtYdvzkmRnaep2UzepUH-9XVt6mpfheWfgIeQe6BSAyqdl-VFMGYV8yjIh8zy5IiMGmYgZ4-z6kiG7JRPvN5RSYCLjNBuR1aKLwhqj0rU_StvWhkPkmmiGWGtlvqLCbXctBozmtkPV218VrOsG5NN17f8uKoMza-WDNVF58AG3_o7cNKr1ODnPMVnNXpbFWzxfvL4Xz_PYMMlDzGqQFAE0T7jSDCjNc8A8RSO1NAmjqeKAtaEyyZXQSjQpUqrrRiIX0mg-Jo-nu7vefe_Rh2rj9n13fFkxngoJwBN2pOBEmd5532NT7Xq7Vf2hAloNAqtBYDUIrM4Cj52HU8ci4oXPhRQiEfwPgSxsPg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Beheshtipour, Zohreh</creator><creator>Khaloozadeh, Hamid</creator><creator>Amjadifard, Roya</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6948-8898</orcidid><orcidid>https://orcid.org/0000-0002-1870-6349</orcidid></search><sort><creationdate>20200301</creationdate><title>On the Solvability of Feedback Complete Linearization of Nonlinear Stochastic Systems</title><author>Beheshtipour, Zohreh ; Khaloozadeh, Hamid ; Amjadifard, Roya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2d190e11b343ab2100771e75ec9b9c4205a31edc0947a8ba8f5e00bdf9e389cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive systems</topic><topic>Control methods</topic><topic>Differential geometry</topic><topic>Ear</topic><topic>Existence theorems</topic><topic>Feedback</topic><topic>feedback complete linearization</topic><topic>Isomorphism</topic><topic>Linearization</topic><topic>Multiplication</topic><topic>nonlinear stochastic systems</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Partial differential equations</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Theorems</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beheshtipour, Zohreh</creatorcontrib><creatorcontrib>Khaloozadeh, Hamid</creatorcontrib><creatorcontrib>Amjadifard, Roya</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beheshtipour, Zohreh</au><au>Khaloozadeh, Hamid</au><au>Amjadifard, Roya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Solvability of Feedback Complete Linearization of Nonlinear Stochastic Systems</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>50</volume><issue>3</issue><spage>1074</spage><epage>1082</epage><pages>1074-1082</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>In this paper, solvability of the feedback complete linearization problem for single input nonlinear stochastic systems with multidimensional plant noise has been studied. Through a new theorem, necessary and sufficient conditions for the solvability of the problem are provided. The proposed theorem recognizes the existence of the diffeomorphism and feedback law for linearizing the nonlinear stochastic system without finding them. Checking the conditions of the proposed theorem in order to recognize the solvability of the feedback complete linearization problem, needs only simple matrices multiplication instead of complete solving the problem. The previous works need to solve a set of partial differential equations to recognize the solvability of the problem. The nonlinear stochastic systems that satisfy the conditions of the proposed theorem are completely linearizable, then linear stochastic control methods can be applied to control them and more accurate results in less computation will be achieved. Two numerical examples illustrate the theoretical results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2017.2689774</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6948-8898</orcidid><orcidid>https://orcid.org/0000-0002-1870-6349</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2020-03, Vol.50 (3), p.1074-1082
issn 2168-2216
2168-2232
language eng
recordid cdi_ieee_primary_7898848
source IEEE Electronic Library (IEL)
subjects Adaptive systems
Control methods
Differential geometry
Ear
Existence theorems
Feedback
feedback complete linearization
Isomorphism
Linearization
Multiplication
nonlinear stochastic systems
Nonlinear systems
Optimal control
Partial differential equations
Stochastic processes
Stochastic systems
Theorems
Transforms
title On the Solvability of Feedback Complete Linearization of Nonlinear Stochastic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Solvability%20of%20Feedback%20Complete%20Linearization%20of%20Nonlinear%20Stochastic%20Systems&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Beheshtipour,%20Zohreh&rft.date=2020-03-01&rft.volume=50&rft.issue=3&rft.spage=1074&rft.epage=1082&rft.pages=1074-1082&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2017.2689774&rft_dat=%3Cproquest_RIE%3E2358911342%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2358911342&rft_id=info:pmid/&rft_ieee_id=7898848&rfr_iscdi=true