RTN in Scaled Transistors for On-Chip Random Seed Generation

Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2017-08, Vol.25 (8), p.2248-2257
Hauptverfasser: Mohanty, Abinash, Sutaria, Ketul B., Awano, Hiromitsu, Sato, Takashi, Yu Cao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2257
container_issue 8
container_start_page 2248
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 25
creator Mohanty, Abinash
Sutaria, Ketul B.
Awano, Hiromitsu
Sato, Takashi
Yu Cao
description Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-RNG uses a deterministic algorithm to produce numbers with a distribution very similar to uniform. True RNGs (TRNGs), on the other hand, use some natural phenomenon/process to generate random bits. They are nondeterministic, because the next number to be generated cannot be determined in advance. In this paper, a novel on-chip noise source, random telegraph noise (RTN), is exploited for simple and reliable TRNG. RTN, a microscopic process of stochastic trapping/detrapping of charges, is usually considered as a noise and mitigated in design. Through physical modeling and silicon measurement, we demonstrate that RTN is appropriate for TRNG, especially in highly scaled MOSFETs. Due to the slow speed of RTN, we purpose the system for on-chip seed generation for random number. Our contributions are: 1) physical model calibration of RTN with comprehensive 65- and 180-nm transistor measurements; 2) the scaling trend of RTN, validated with silicon data down to 28 nm; 3) design principles to achieve 50% signal probability by using intrinsic RTN physical properties, without traditional postprocessing algorithms, the generated sequence passes the National Institute of Standards and Technology (NIST) tests; and 4) solutions to manage realistic issues in practice, including multilevel RTN signal, robustness to voltage and temperature fluctuations and the operation speed.
doi_str_mv 10.1109/TVLSI.2017.2687762
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7898409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7898409</ieee_id><sourcerecordid>1923769826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-79cfec6a6e551d90fcc932806f86f736211d25d5daabf2768c7928cb2d999d813</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1szSTcf4EWK1kKx0K5eQ5oP3NJma7I9-O-NtjiXmcP7zAwPQrdARgBEPTQf89VsRAmIEeVSCE7P0ADqWlSq1HmZCWeVpEAu0VXOG0JgPFZkgB6XzRtuI15Zs_UON8nE3Oa-SxmHLuFFrCaf7R4vTXTdDq98yUx99Mn0bRev0UUw2-xvTn2I3l-em8lrNV9MZ5OneWUZh74SygZvueG-rsEpEqxVjErCg-RBME4BHK1d7YxZByq4tEJRadfUld-dBDZE98e9-9R9HXzu9aY7pFhOalCUCa4k5SVFjymbupyTD3qf2p1J3xqI_rWk_yzpX0v6ZKlAd0eo9d7_A0IqOSaK_QCfMGH-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923769826</pqid></control><display><type>article</type><title>RTN in Scaled Transistors for On-Chip Random Seed Generation</title><source>IEEE Electronic Library (IEL)</source><creator>Mohanty, Abinash ; Sutaria, Ketul B. ; Awano, Hiromitsu ; Sato, Takashi ; Yu Cao</creator><creatorcontrib>Mohanty, Abinash ; Sutaria, Ketul B. ; Awano, Hiromitsu ; Sato, Takashi ; Yu Cao</creatorcontrib><description>Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-RNG uses a deterministic algorithm to produce numbers with a distribution very similar to uniform. True RNGs (TRNGs), on the other hand, use some natural phenomenon/process to generate random bits. They are nondeterministic, because the next number to be generated cannot be determined in advance. In this paper, a novel on-chip noise source, random telegraph noise (RTN), is exploited for simple and reliable TRNG. RTN, a microscopic process of stochastic trapping/detrapping of charges, is usually considered as a noise and mitigated in design. Through physical modeling and silicon measurement, we demonstrate that RTN is appropriate for TRNG, especially in highly scaled MOSFETs. Due to the slow speed of RTN, we purpose the system for on-chip seed generation for random number. Our contributions are: 1) physical model calibration of RTN with comprehensive 65- and 180-nm transistor measurements; 2) the scaling trend of RTN, validated with silicon data down to 28 nm; 3) design principles to achieve 50% signal probability by using intrinsic RTN physical properties, without traditional postprocessing algorithms, the generated sequence passes the National Institute of Standards and Technology (NIST) tests; and 4) solutions to manage realistic issues in practice, including multilevel RTN signal, robustness to voltage and temperature fluctuations and the operation speed.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2017.2687762</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cryptography ; Electron traps ; Encryption ; Logic gates ; MOSFET ; MOSFETs ; Multilevel ; Noise ; Numbers ; Physical properties ; Probability theory ; random number generation ; Random numbers ; random seed ; random telegraphic noise ; Randomness ; Robustness ; Scaling ; Semiconductor device modeling ; Semiconductor devices ; Silicon ; System reliability ; System-on-chip ; Transistors</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2017-08, Vol.25 (8), p.2248-2257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-79cfec6a6e551d90fcc932806f86f736211d25d5daabf2768c7928cb2d999d813</citedby><cites>FETCH-LOGICAL-c361t-79cfec6a6e551d90fcc932806f86f736211d25d5daabf2768c7928cb2d999d813</cites><orcidid>0000-0002-3674-4584 ; 0000-0003-3035-0645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7898409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7898409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohanty, Abinash</creatorcontrib><creatorcontrib>Sutaria, Ketul B.</creatorcontrib><creatorcontrib>Awano, Hiromitsu</creatorcontrib><creatorcontrib>Sato, Takashi</creatorcontrib><creatorcontrib>Yu Cao</creatorcontrib><title>RTN in Scaled Transistors for On-Chip Random Seed Generation</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-RNG uses a deterministic algorithm to produce numbers with a distribution very similar to uniform. True RNGs (TRNGs), on the other hand, use some natural phenomenon/process to generate random bits. They are nondeterministic, because the next number to be generated cannot be determined in advance. In this paper, a novel on-chip noise source, random telegraph noise (RTN), is exploited for simple and reliable TRNG. RTN, a microscopic process of stochastic trapping/detrapping of charges, is usually considered as a noise and mitigated in design. Through physical modeling and silicon measurement, we demonstrate that RTN is appropriate for TRNG, especially in highly scaled MOSFETs. Due to the slow speed of RTN, we purpose the system for on-chip seed generation for random number. Our contributions are: 1) physical model calibration of RTN with comprehensive 65- and 180-nm transistor measurements; 2) the scaling trend of RTN, validated with silicon data down to 28 nm; 3) design principles to achieve 50% signal probability by using intrinsic RTN physical properties, without traditional postprocessing algorithms, the generated sequence passes the National Institute of Standards and Technology (NIST) tests; and 4) solutions to manage realistic issues in practice, including multilevel RTN signal, robustness to voltage and temperature fluctuations and the operation speed.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Electron traps</subject><subject>Encryption</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Multilevel</subject><subject>Noise</subject><subject>Numbers</subject><subject>Physical properties</subject><subject>Probability theory</subject><subject>random number generation</subject><subject>Random numbers</subject><subject>random seed</subject><subject>random telegraphic noise</subject><subject>Randomness</subject><subject>Robustness</subject><subject>Scaling</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>System reliability</subject><subject>System-on-chip</subject><subject>Transistors</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1szSTcf4EWK1kKx0K5eQ5oP3NJma7I9-O-NtjiXmcP7zAwPQrdARgBEPTQf89VsRAmIEeVSCE7P0ADqWlSq1HmZCWeVpEAu0VXOG0JgPFZkgB6XzRtuI15Zs_UON8nE3Oa-SxmHLuFFrCaf7R4vTXTdDq98yUx99Mn0bRev0UUw2-xvTn2I3l-em8lrNV9MZ5OneWUZh74SygZvueG-rsEpEqxVjErCg-RBME4BHK1d7YxZByq4tEJRadfUld-dBDZE98e9-9R9HXzu9aY7pFhOalCUCa4k5SVFjymbupyTD3qf2p1J3xqI_rWk_yzpX0v6ZKlAd0eo9d7_A0IqOSaK_QCfMGH-</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Mohanty, Abinash</creator><creator>Sutaria, Ketul B.</creator><creator>Awano, Hiromitsu</creator><creator>Sato, Takashi</creator><creator>Yu Cao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3674-4584</orcidid><orcidid>https://orcid.org/0000-0003-3035-0645</orcidid></search><sort><creationdate>20170801</creationdate><title>RTN in Scaled Transistors for On-Chip Random Seed Generation</title><author>Mohanty, Abinash ; Sutaria, Ketul B. ; Awano, Hiromitsu ; Sato, Takashi ; Yu Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-79cfec6a6e551d90fcc932806f86f736211d25d5daabf2768c7928cb2d999d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Electron traps</topic><topic>Encryption</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Multilevel</topic><topic>Noise</topic><topic>Numbers</topic><topic>Physical properties</topic><topic>Probability theory</topic><topic>random number generation</topic><topic>Random numbers</topic><topic>random seed</topic><topic>random telegraphic noise</topic><topic>Randomness</topic><topic>Robustness</topic><topic>Scaling</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>System reliability</topic><topic>System-on-chip</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Abinash</creatorcontrib><creatorcontrib>Sutaria, Ketul B.</creatorcontrib><creatorcontrib>Awano, Hiromitsu</creatorcontrib><creatorcontrib>Sato, Takashi</creatorcontrib><creatorcontrib>Yu Cao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohanty, Abinash</au><au>Sutaria, Ketul B.</au><au>Awano, Hiromitsu</au><au>Sato, Takashi</au><au>Yu Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RTN in Scaled Transistors for On-Chip Random Seed Generation</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>25</volume><issue>8</issue><spage>2248</spage><epage>2257</epage><pages>2248-2257</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-RNG uses a deterministic algorithm to produce numbers with a distribution very similar to uniform. True RNGs (TRNGs), on the other hand, use some natural phenomenon/process to generate random bits. They are nondeterministic, because the next number to be generated cannot be determined in advance. In this paper, a novel on-chip noise source, random telegraph noise (RTN), is exploited for simple and reliable TRNG. RTN, a microscopic process of stochastic trapping/detrapping of charges, is usually considered as a noise and mitigated in design. Through physical modeling and silicon measurement, we demonstrate that RTN is appropriate for TRNG, especially in highly scaled MOSFETs. Due to the slow speed of RTN, we purpose the system for on-chip seed generation for random number. Our contributions are: 1) physical model calibration of RTN with comprehensive 65- and 180-nm transistor measurements; 2) the scaling trend of RTN, validated with silicon data down to 28 nm; 3) design principles to achieve 50% signal probability by using intrinsic RTN physical properties, without traditional postprocessing algorithms, the generated sequence passes the National Institute of Standards and Technology (NIST) tests; and 4) solutions to manage realistic issues in practice, including multilevel RTN signal, robustness to voltage and temperature fluctuations and the operation speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2017.2687762</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3674-4584</orcidid><orcidid>https://orcid.org/0000-0003-3035-0645</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2017-08, Vol.25 (8), p.2248-2257
issn 1063-8210
1557-9999
language eng
recordid cdi_ieee_primary_7898409
source IEEE Electronic Library (IEL)
subjects Algorithms
Cryptography
Electron traps
Encryption
Logic gates
MOSFET
MOSFETs
Multilevel
Noise
Numbers
Physical properties
Probability theory
random number generation
Random numbers
random seed
random telegraphic noise
Randomness
Robustness
Scaling
Semiconductor device modeling
Semiconductor devices
Silicon
System reliability
System-on-chip
Transistors
title RTN in Scaled Transistors for On-Chip Random Seed Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RTN%20in%20Scaled%20Transistors%20for%20On-Chip%20Random%20Seed%20Generation&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Mohanty,%20Abinash&rft.date=2017-08-01&rft.volume=25&rft.issue=8&rft.spage=2248&rft.epage=2257&rft.pages=2248-2257&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2017.2687762&rft_dat=%3Cproquest_RIE%3E1923769826%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923769826&rft_id=info:pmid/&rft_ieee_id=7898409&rfr_iscdi=true