RTN in Scaled Transistors for On-Chip Random Seed Generation
Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2017-08, Vol.25 (8), p.2248-2257 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2257 |
---|---|
container_issue | 8 |
container_start_page | 2248 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 25 |
creator | Mohanty, Abinash Sutaria, Ketul B. Awano, Hiromitsu Sato, Takashi Yu Cao |
description | Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-RNG uses a deterministic algorithm to produce numbers with a distribution very similar to uniform. True RNGs (TRNGs), on the other hand, use some natural phenomenon/process to generate random bits. They are nondeterministic, because the next number to be generated cannot be determined in advance. In this paper, a novel on-chip noise source, random telegraph noise (RTN), is exploited for simple and reliable TRNG. RTN, a microscopic process of stochastic trapping/detrapping of charges, is usually considered as a noise and mitigated in design. Through physical modeling and silicon measurement, we demonstrate that RTN is appropriate for TRNG, especially in highly scaled MOSFETs. Due to the slow speed of RTN, we purpose the system for on-chip seed generation for random number. Our contributions are: 1) physical model calibration of RTN with comprehensive 65- and 180-nm transistor measurements; 2) the scaling trend of RTN, validated with silicon data down to 28 nm; 3) design principles to achieve 50% signal probability by using intrinsic RTN physical properties, without traditional postprocessing algorithms, the generated sequence passes the National Institute of Standards and Technology (NIST) tests; and 4) solutions to manage realistic issues in practice, including multilevel RTN signal, robustness to voltage and temperature fluctuations and the operation speed. |
doi_str_mv | 10.1109/TVLSI.2017.2687762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7898409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7898409</ieee_id><sourcerecordid>1923769826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-79cfec6a6e551d90fcc932806f86f736211d25d5daabf2768c7928cb2d999d813</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1szSTcf4EWK1kKx0K5eQ5oP3NJma7I9-O-NtjiXmcP7zAwPQrdARgBEPTQf89VsRAmIEeVSCE7P0ADqWlSq1HmZCWeVpEAu0VXOG0JgPFZkgB6XzRtuI15Zs_UON8nE3Oa-SxmHLuFFrCaf7R4vTXTdDq98yUx99Mn0bRev0UUw2-xvTn2I3l-em8lrNV9MZ5OneWUZh74SygZvueG-rsEpEqxVjErCg-RBME4BHK1d7YxZByq4tEJRadfUld-dBDZE98e9-9R9HXzu9aY7pFhOalCUCa4k5SVFjymbupyTD3qf2p1J3xqI_rWk_yzpX0v6ZKlAd0eo9d7_A0IqOSaK_QCfMGH-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923769826</pqid></control><display><type>article</type><title>RTN in Scaled Transistors for On-Chip Random Seed Generation</title><source>IEEE Electronic Library (IEL)</source><creator>Mohanty, Abinash ; Sutaria, Ketul B. ; Awano, Hiromitsu ; Sato, Takashi ; Yu Cao</creator><creatorcontrib>Mohanty, Abinash ; Sutaria, Ketul B. ; Awano, Hiromitsu ; Sato, Takashi ; Yu Cao</creatorcontrib><description>Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-RNG uses a deterministic algorithm to produce numbers with a distribution very similar to uniform. True RNGs (TRNGs), on the other hand, use some natural phenomenon/process to generate random bits. They are nondeterministic, because the next number to be generated cannot be determined in advance. In this paper, a novel on-chip noise source, random telegraph noise (RTN), is exploited for simple and reliable TRNG. RTN, a microscopic process of stochastic trapping/detrapping of charges, is usually considered as a noise and mitigated in design. Through physical modeling and silicon measurement, we demonstrate that RTN is appropriate for TRNG, especially in highly scaled MOSFETs. Due to the slow speed of RTN, we purpose the system for on-chip seed generation for random number. Our contributions are: 1) physical model calibration of RTN with comprehensive 65- and 180-nm transistor measurements; 2) the scaling trend of RTN, validated with silicon data down to 28 nm; 3) design principles to achieve 50% signal probability by using intrinsic RTN physical properties, without traditional postprocessing algorithms, the generated sequence passes the National Institute of Standards and Technology (NIST) tests; and 4) solutions to manage realistic issues in practice, including multilevel RTN signal, robustness to voltage and temperature fluctuations and the operation speed.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2017.2687762</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cryptography ; Electron traps ; Encryption ; Logic gates ; MOSFET ; MOSFETs ; Multilevel ; Noise ; Numbers ; Physical properties ; Probability theory ; random number generation ; Random numbers ; random seed ; random telegraphic noise ; Randomness ; Robustness ; Scaling ; Semiconductor device modeling ; Semiconductor devices ; Silicon ; System reliability ; System-on-chip ; Transistors</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2017-08, Vol.25 (8), p.2248-2257</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-79cfec6a6e551d90fcc932806f86f736211d25d5daabf2768c7928cb2d999d813</citedby><cites>FETCH-LOGICAL-c361t-79cfec6a6e551d90fcc932806f86f736211d25d5daabf2768c7928cb2d999d813</cites><orcidid>0000-0002-3674-4584 ; 0000-0003-3035-0645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7898409$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7898409$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohanty, Abinash</creatorcontrib><creatorcontrib>Sutaria, Ketul B.</creatorcontrib><creatorcontrib>Awano, Hiromitsu</creatorcontrib><creatorcontrib>Sato, Takashi</creatorcontrib><creatorcontrib>Yu Cao</creatorcontrib><title>RTN in Scaled Transistors for On-Chip Random Seed Generation</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-RNG uses a deterministic algorithm to produce numbers with a distribution very similar to uniform. True RNGs (TRNGs), on the other hand, use some natural phenomenon/process to generate random bits. They are nondeterministic, because the next number to be generated cannot be determined in advance. In this paper, a novel on-chip noise source, random telegraph noise (RTN), is exploited for simple and reliable TRNG. RTN, a microscopic process of stochastic trapping/detrapping of charges, is usually considered as a noise and mitigated in design. Through physical modeling and silicon measurement, we demonstrate that RTN is appropriate for TRNG, especially in highly scaled MOSFETs. Due to the slow speed of RTN, we purpose the system for on-chip seed generation for random number. Our contributions are: 1) physical model calibration of RTN with comprehensive 65- and 180-nm transistor measurements; 2) the scaling trend of RTN, validated with silicon data down to 28 nm; 3) design principles to achieve 50% signal probability by using intrinsic RTN physical properties, without traditional postprocessing algorithms, the generated sequence passes the National Institute of Standards and Technology (NIST) tests; and 4) solutions to manage realistic issues in practice, including multilevel RTN signal, robustness to voltage and temperature fluctuations and the operation speed.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Electron traps</subject><subject>Encryption</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>Multilevel</subject><subject>Noise</subject><subject>Numbers</subject><subject>Physical properties</subject><subject>Probability theory</subject><subject>random number generation</subject><subject>Random numbers</subject><subject>random seed</subject><subject>random telegraphic noise</subject><subject>Randomness</subject><subject>Robustness</subject><subject>Scaling</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>System reliability</subject><subject>System-on-chip</subject><subject>Transistors</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1szSTcf4EWK1kKx0K5eQ5oP3NJma7I9-O-NtjiXmcP7zAwPQrdARgBEPTQf89VsRAmIEeVSCE7P0ADqWlSq1HmZCWeVpEAu0VXOG0JgPFZkgB6XzRtuI15Zs_UON8nE3Oa-SxmHLuFFrCaf7R4vTXTdDq98yUx99Mn0bRev0UUw2-xvTn2I3l-em8lrNV9MZ5OneWUZh74SygZvueG-rsEpEqxVjErCg-RBME4BHK1d7YxZByq4tEJRadfUld-dBDZE98e9-9R9HXzu9aY7pFhOalCUCa4k5SVFjymbupyTD3qf2p1J3xqI_rWk_yzpX0v6ZKlAd0eo9d7_A0IqOSaK_QCfMGH-</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Mohanty, Abinash</creator><creator>Sutaria, Ketul B.</creator><creator>Awano, Hiromitsu</creator><creator>Sato, Takashi</creator><creator>Yu Cao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3674-4584</orcidid><orcidid>https://orcid.org/0000-0003-3035-0645</orcidid></search><sort><creationdate>20170801</creationdate><title>RTN in Scaled Transistors for On-Chip Random Seed Generation</title><author>Mohanty, Abinash ; Sutaria, Ketul B. ; Awano, Hiromitsu ; Sato, Takashi ; Yu Cao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-79cfec6a6e551d90fcc932806f86f736211d25d5daabf2768c7928cb2d999d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Electron traps</topic><topic>Encryption</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>Multilevel</topic><topic>Noise</topic><topic>Numbers</topic><topic>Physical properties</topic><topic>Probability theory</topic><topic>random number generation</topic><topic>Random numbers</topic><topic>random seed</topic><topic>random telegraphic noise</topic><topic>Randomness</topic><topic>Robustness</topic><topic>Scaling</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>System reliability</topic><topic>System-on-chip</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Abinash</creatorcontrib><creatorcontrib>Sutaria, Ketul B.</creatorcontrib><creatorcontrib>Awano, Hiromitsu</creatorcontrib><creatorcontrib>Sato, Takashi</creatorcontrib><creatorcontrib>Yu Cao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohanty, Abinash</au><au>Sutaria, Ketul B.</au><au>Awano, Hiromitsu</au><au>Sato, Takashi</au><au>Yu Cao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RTN in Scaled Transistors for On-Chip Random Seed Generation</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>25</volume><issue>8</issue><spage>2248</spage><epage>2257</epage><pages>2248-2257</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Random numbers play a vital role in cryptography, where they are used to generate keys, nonce, one-time pads, and initialization vectors for symmetric encryption. The quality of random number generator (RNG) has significant implications on vulnerability and performance of these algorithms. A pseudo-RNG uses a deterministic algorithm to produce numbers with a distribution very similar to uniform. True RNGs (TRNGs), on the other hand, use some natural phenomenon/process to generate random bits. They are nondeterministic, because the next number to be generated cannot be determined in advance. In this paper, a novel on-chip noise source, random telegraph noise (RTN), is exploited for simple and reliable TRNG. RTN, a microscopic process of stochastic trapping/detrapping of charges, is usually considered as a noise and mitigated in design. Through physical modeling and silicon measurement, we demonstrate that RTN is appropriate for TRNG, especially in highly scaled MOSFETs. Due to the slow speed of RTN, we purpose the system for on-chip seed generation for random number. Our contributions are: 1) physical model calibration of RTN with comprehensive 65- and 180-nm transistor measurements; 2) the scaling trend of RTN, validated with silicon data down to 28 nm; 3) design principles to achieve 50% signal probability by using intrinsic RTN physical properties, without traditional postprocessing algorithms, the generated sequence passes the National Institute of Standards and Technology (NIST) tests; and 4) solutions to manage realistic issues in practice, including multilevel RTN signal, robustness to voltage and temperature fluctuations and the operation speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2017.2687762</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3674-4584</orcidid><orcidid>https://orcid.org/0000-0003-3035-0645</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2017-08, Vol.25 (8), p.2248-2257 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_ieee_primary_7898409 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cryptography Electron traps Encryption Logic gates MOSFET MOSFETs Multilevel Noise Numbers Physical properties Probability theory random number generation Random numbers random seed random telegraphic noise Randomness Robustness Scaling Semiconductor device modeling Semiconductor devices Silicon System reliability System-on-chip Transistors |
title | RTN in Scaled Transistors for On-Chip Random Seed Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RTN%20in%20Scaled%20Transistors%20for%20On-Chip%20Random%20Seed%20Generation&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Mohanty,%20Abinash&rft.date=2017-08-01&rft.volume=25&rft.issue=8&rft.spage=2248&rft.epage=2257&rft.pages=2248-2257&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2017.2687762&rft_dat=%3Cproquest_RIE%3E1923769826%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1923769826&rft_id=info:pmid/&rft_ieee_id=7898409&rfr_iscdi=true |