Reduction of Distributions: Definitions, Properties, and Applications
In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the searc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2017-11, Vol.62 (11), p.5755-5768 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5768 |
---|---|
container_issue | 11 |
container_start_page | 5755 |
container_title | IEEE transactions on automatic control |
container_volume | 62 |
creator | Liyong Lin Ware, Simon Rong Su Wonham, W. Murray |
description | In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the search space of candidate reductions, as a first step toward efficiently computing optimal reductions. It is then shown that a distribution has a reduction if and only if a particular candidate reduction is indeed a reduction. We then provide a sound substitution-based proof technique that can be used for (automatic) reduction verification. Techniques for refuting candidate reductions are also provided. We then explain an application of the decomposability verification problem in the lower bound proofs for the problem of supervisor decomposition and the problem of existence of a decentralized supervisor. Finally, some other applications of the notion of reduction of distributions are also shown. |
doi_str_mv | 10.1109/TAC.2017.2692561 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7894259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7894259</ieee_id><sourcerecordid>10_1109_TAC_2017_2692561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-9c79a0bad1e2341c422607837a4363fe48c5579025c3ddb2bad2e197db053b673</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFfvgpf-AFuTybe30t1VYUGR9VzSJIXI2pake_Df2_3A08zDvO8cHoTuCS4JwfppW9UlYCJLEBq4IBcoI5yrAjjQS5RhTFShQYlrdJPS94yCMZKh1ad3ezuFoc-HLl-GNMXQ7g-cnvOl70IfjvCYf8Rh9HEKft5N7_JqHHfBmuP1Fl11Zpf83Xku0Nd6ta1fi837y1tdbQpLMZ8KbaU2uDWOeKCMWAYgsFRUGkYF7TxTlnOpMXBLnWthToInWroWc9oKSRcIn_7aOKQUfdeMMfyY-NsQ3Bw0NLOG5qChOWuYKw-nSvDe_8el0gy4pn-dHVjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduction of Distributions: Definitions, Properties, and Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Liyong Lin ; Ware, Simon ; Rong Su ; Wonham, W. Murray</creator><creatorcontrib>Liyong Lin ; Ware, Simon ; Rong Su ; Wonham, W. Murray</creatorcontrib><description>In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the search space of candidate reductions, as a first step toward efficiently computing optimal reductions. It is then shown that a distribution has a reduction if and only if a particular candidate reduction is indeed a reduction. We then provide a sound substitution-based proof technique that can be used for (automatic) reduction verification. Techniques for refuting candidate reductions are also provided. We then explain an application of the decomposability verification problem in the lower bound proofs for the problem of supervisor decomposition and the problem of existence of a decentralized supervisor. Finally, some other applications of the notion of reduction of distributions are also shown.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2692561</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automata ; Complexity ; Complexity theory ; Computer architecture ; Decentralized control ; decentralized supervisor synthesis ; decomposability ; Discrete-event systems ; Indexes ; Supervisory control</subject><ispartof>IEEE transactions on automatic control, 2017-11, Vol.62 (11), p.5755-5768</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-9c79a0bad1e2341c422607837a4363fe48c5579025c3ddb2bad2e197db053b673</citedby><cites>FETCH-LOGICAL-c305t-9c79a0bad1e2341c422607837a4363fe48c5579025c3ddb2bad2e197db053b673</cites><orcidid>0000-0002-8363-584X ; 0000-0003-3448-0586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7894259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7894259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liyong Lin</creatorcontrib><creatorcontrib>Ware, Simon</creatorcontrib><creatorcontrib>Rong Su</creatorcontrib><creatorcontrib>Wonham, W. Murray</creatorcontrib><title>Reduction of Distributions: Definitions, Properties, and Applications</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the search space of candidate reductions, as a first step toward efficiently computing optimal reductions. It is then shown that a distribution has a reduction if and only if a particular candidate reduction is indeed a reduction. We then provide a sound substitution-based proof technique that can be used for (automatic) reduction verification. Techniques for refuting candidate reductions are also provided. We then explain an application of the decomposability verification problem in the lower bound proofs for the problem of supervisor decomposition and the problem of existence of a decentralized supervisor. Finally, some other applications of the notion of reduction of distributions are also shown.</description><subject>Automata</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computer architecture</subject><subject>Decentralized control</subject><subject>decentralized supervisor synthesis</subject><subject>decomposability</subject><subject>Discrete-event systems</subject><subject>Indexes</subject><subject>Supervisory control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMoWFfvgpf-AFuTybe30t1VYUGR9VzSJIXI2pake_Df2_3A08zDvO8cHoTuCS4JwfppW9UlYCJLEBq4IBcoI5yrAjjQS5RhTFShQYlrdJPS94yCMZKh1ad3ezuFoc-HLl-GNMXQ7g-cnvOl70IfjvCYf8Rh9HEKft5N7_JqHHfBmuP1Fl11Zpf83Xku0Nd6ta1fi837y1tdbQpLMZ8KbaU2uDWOeKCMWAYgsFRUGkYF7TxTlnOpMXBLnWthToInWroWc9oKSRcIn_7aOKQUfdeMMfyY-NsQ3Bw0NLOG5qChOWuYKw-nSvDe_8el0gy4pn-dHVjI</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Liyong Lin</creator><creator>Ware, Simon</creator><creator>Rong Su</creator><creator>Wonham, W. Murray</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8363-584X</orcidid><orcidid>https://orcid.org/0000-0003-3448-0586</orcidid></search><sort><creationdate>201711</creationdate><title>Reduction of Distributions: Definitions, Properties, and Applications</title><author>Liyong Lin ; Ware, Simon ; Rong Su ; Wonham, W. Murray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-9c79a0bad1e2341c422607837a4363fe48c5579025c3ddb2bad2e197db053b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automata</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computer architecture</topic><topic>Decentralized control</topic><topic>decentralized supervisor synthesis</topic><topic>decomposability</topic><topic>Discrete-event systems</topic><topic>Indexes</topic><topic>Supervisory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liyong Lin</creatorcontrib><creatorcontrib>Ware, Simon</creatorcontrib><creatorcontrib>Rong Su</creatorcontrib><creatorcontrib>Wonham, W. Murray</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liyong Lin</au><au>Ware, Simon</au><au>Rong Su</au><au>Wonham, W. Murray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Distributions: Definitions, Properties, and Applications</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2017-11</date><risdate>2017</risdate><volume>62</volume><issue>11</issue><spage>5755</spage><epage>5768</epage><pages>5755-5768</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the search space of candidate reductions, as a first step toward efficiently computing optimal reductions. It is then shown that a distribution has a reduction if and only if a particular candidate reduction is indeed a reduction. We then provide a sound substitution-based proof technique that can be used for (automatic) reduction verification. Techniques for refuting candidate reductions are also provided. We then explain an application of the decomposability verification problem in the lower bound proofs for the problem of supervisor decomposition and the problem of existence of a decentralized supervisor. Finally, some other applications of the notion of reduction of distributions are also shown.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2692561</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8363-584X</orcidid><orcidid>https://orcid.org/0000-0003-3448-0586</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2017-11, Vol.62 (11), p.5755-5768 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_7894259 |
source | IEEE Electronic Library (IEL) |
subjects | Automata Complexity Complexity theory Computer architecture Decentralized control decentralized supervisor synthesis decomposability Discrete-event systems Indexes Supervisory control |
title | Reduction of Distributions: Definitions, Properties, and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Distributions:%20Definitions,%20Properties,%20and%20Applications&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Liyong%20Lin&rft.date=2017-11&rft.volume=62&rft.issue=11&rft.spage=5755&rft.epage=5768&rft.pages=5755-5768&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2692561&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2017_2692561%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7894259&rfr_iscdi=true |