Reduction of Distributions: Definitions, Properties, and Applications

In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the searc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2017-11, Vol.62 (11), p.5755-5768
Hauptverfasser: Liyong Lin, Ware, Simon, Rong Su, Wonham, W. Murray
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5768
container_issue 11
container_start_page 5755
container_title IEEE transactions on automatic control
container_volume 62
creator Liyong Lin
Ware, Simon
Rong Su
Wonham, W. Murray
description In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the search space of candidate reductions, as a first step toward efficiently computing optimal reductions. It is then shown that a distribution has a reduction if and only if a particular candidate reduction is indeed a reduction. We then provide a sound substitution-based proof technique that can be used for (automatic) reduction verification. Techniques for refuting candidate reductions are also provided. We then explain an application of the decomposability verification problem in the lower bound proofs for the problem of supervisor decomposition and the problem of existence of a decentralized supervisor. Finally, some other applications of the notion of reduction of distributions are also shown.
doi_str_mv 10.1109/TAC.2017.2692561
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7894259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7894259</ieee_id><sourcerecordid>10_1109_TAC_2017_2692561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-9c79a0bad1e2341c422607837a4363fe48c5579025c3ddb2bad2e197db053b673</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFfvgpf-AFuTybe30t1VYUGR9VzSJIXI2pake_Df2_3A08zDvO8cHoTuCS4JwfppW9UlYCJLEBq4IBcoI5yrAjjQS5RhTFShQYlrdJPS94yCMZKh1ad3ezuFoc-HLl-GNMXQ7g-cnvOl70IfjvCYf8Rh9HEKft5N7_JqHHfBmuP1Fl11Zpf83Xku0Nd6ta1fi837y1tdbQpLMZ8KbaU2uDWOeKCMWAYgsFRUGkYF7TxTlnOpMXBLnWthToInWroWc9oKSRcIn_7aOKQUfdeMMfyY-NsQ3Bw0NLOG5qChOWuYKw-nSvDe_8el0gy4pn-dHVjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduction of Distributions: Definitions, Properties, and Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Liyong Lin ; Ware, Simon ; Rong Su ; Wonham, W. Murray</creator><creatorcontrib>Liyong Lin ; Ware, Simon ; Rong Su ; Wonham, W. Murray</creatorcontrib><description>In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the search space of candidate reductions, as a first step toward efficiently computing optimal reductions. It is then shown that a distribution has a reduction if and only if a particular candidate reduction is indeed a reduction. We then provide a sound substitution-based proof technique that can be used for (automatic) reduction verification. Techniques for refuting candidate reductions are also provided. We then explain an application of the decomposability verification problem in the lower bound proofs for the problem of supervisor decomposition and the problem of existence of a decentralized supervisor. Finally, some other applications of the notion of reduction of distributions are also shown.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2692561</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automata ; Complexity ; Complexity theory ; Computer architecture ; Decentralized control ; decentralized supervisor synthesis ; decomposability ; Discrete-event systems ; Indexes ; Supervisory control</subject><ispartof>IEEE transactions on automatic control, 2017-11, Vol.62 (11), p.5755-5768</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-9c79a0bad1e2341c422607837a4363fe48c5579025c3ddb2bad2e197db053b673</citedby><cites>FETCH-LOGICAL-c305t-9c79a0bad1e2341c422607837a4363fe48c5579025c3ddb2bad2e197db053b673</cites><orcidid>0000-0002-8363-584X ; 0000-0003-3448-0586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7894259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7894259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liyong Lin</creatorcontrib><creatorcontrib>Ware, Simon</creatorcontrib><creatorcontrib>Rong Su</creatorcontrib><creatorcontrib>Wonham, W. Murray</creatorcontrib><title>Reduction of Distributions: Definitions, Properties, and Applications</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the search space of candidate reductions, as a first step toward efficiently computing optimal reductions. It is then shown that a distribution has a reduction if and only if a particular candidate reduction is indeed a reduction. We then provide a sound substitution-based proof technique that can be used for (automatic) reduction verification. Techniques for refuting candidate reductions are also provided. We then explain an application of the decomposability verification problem in the lower bound proofs for the problem of supervisor decomposition and the problem of existence of a decentralized supervisor. Finally, some other applications of the notion of reduction of distributions are also shown.</description><subject>Automata</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Computer architecture</subject><subject>Decentralized control</subject><subject>decentralized supervisor synthesis</subject><subject>decomposability</subject><subject>Discrete-event systems</subject><subject>Indexes</subject><subject>Supervisory control</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LxDAQhoMoWFfvgpf-AFuTybe30t1VYUGR9VzSJIXI2pake_Df2_3A08zDvO8cHoTuCS4JwfppW9UlYCJLEBq4IBcoI5yrAjjQS5RhTFShQYlrdJPS94yCMZKh1ad3ezuFoc-HLl-GNMXQ7g-cnvOl70IfjvCYf8Rh9HEKft5N7_JqHHfBmuP1Fl11Zpf83Xku0Nd6ta1fi837y1tdbQpLMZ8KbaU2uDWOeKCMWAYgsFRUGkYF7TxTlnOpMXBLnWthToInWroWc9oKSRcIn_7aOKQUfdeMMfyY-NsQ3Bw0NLOG5qChOWuYKw-nSvDe_8el0gy4pn-dHVjI</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Liyong Lin</creator><creator>Ware, Simon</creator><creator>Rong Su</creator><creator>Wonham, W. Murray</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8363-584X</orcidid><orcidid>https://orcid.org/0000-0003-3448-0586</orcidid></search><sort><creationdate>201711</creationdate><title>Reduction of Distributions: Definitions, Properties, and Applications</title><author>Liyong Lin ; Ware, Simon ; Rong Su ; Wonham, W. Murray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-9c79a0bad1e2341c422607837a4363fe48c5579025c3ddb2bad2e197db053b673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automata</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Computer architecture</topic><topic>Decentralized control</topic><topic>decentralized supervisor synthesis</topic><topic>decomposability</topic><topic>Discrete-event systems</topic><topic>Indexes</topic><topic>Supervisory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liyong Lin</creatorcontrib><creatorcontrib>Ware, Simon</creatorcontrib><creatorcontrib>Rong Su</creatorcontrib><creatorcontrib>Wonham, W. Murray</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liyong Lin</au><au>Ware, Simon</au><au>Rong Su</au><au>Wonham, W. Murray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of Distributions: Definitions, Properties, and Applications</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2017-11</date><risdate>2017</risdate><volume>62</volume><issue>11</issue><spage>5755</spage><epage>5768</epage><pages>5755-5768</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this work, a notion of reduction of distributions is proposed as a technical tool for improving the complexity of decomposability verification and supporting parallel verification of decomposability, by exploiting the rich structures of distributions. We provide some results that reduce the search space of candidate reductions, as a first step toward efficiently computing optimal reductions. It is then shown that a distribution has a reduction if and only if a particular candidate reduction is indeed a reduction. We then provide a sound substitution-based proof technique that can be used for (automatic) reduction verification. Techniques for refuting candidate reductions are also provided. We then explain an application of the decomposability verification problem in the lower bound proofs for the problem of supervisor decomposition and the problem of existence of a decentralized supervisor. Finally, some other applications of the notion of reduction of distributions are also shown.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2692561</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8363-584X</orcidid><orcidid>https://orcid.org/0000-0003-3448-0586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2017-11, Vol.62 (11), p.5755-5768
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_7894259
source IEEE Electronic Library (IEL)
subjects Automata
Complexity
Complexity theory
Computer architecture
Decentralized control
decentralized supervisor synthesis
decomposability
Discrete-event systems
Indexes
Supervisory control
title Reduction of Distributions: Definitions, Properties, and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20Distributions:%20Definitions,%20Properties,%20and%20Applications&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Liyong%20Lin&rft.date=2017-11&rft.volume=62&rft.issue=11&rft.spage=5755&rft.epage=5768&rft.pages=5755-5768&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2692561&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2017_2692561%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7894259&rfr_iscdi=true