The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds
The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general functio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2017-08, Vol.63 (8), p.5039-5051 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5051 |
---|---|
container_issue | 8 |
container_start_page | 5039 |
container_title | IEEE transactions on information theory |
container_volume | 63 |
creator | Merhav, Neri |
description | The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general function that depends only on the joint empirical distribution of the output vector and the code word. This framework allows both mismatched versions and universal versions of the likelihood decoder, as well as the corresponding ordinary deterministic decoders, among many others. We provide a direct analysis method that yields the exact random coding exponent (as opposed to separate upper bounds and lower bounds that turn out to be compatible, which were derived earlier by Scarlett et al.). We also extend the result from pure channel coding to combined source and channel coding (random binning followed by random channel coding) with side information available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even though the stochastic likelihood decoder is suboptimal. |
doi_str_mv | 10.1109/TIT.2017.2689787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7891583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891583</ieee_id><sourcerecordid>2174330544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-1b3b257d8c43a35eeaec78282f613c3695a52ff4c5f0b32dc06db92e474ed1653</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TjLutNZaKAh1XIc0edNObSc1mQH11zul4upx4Z774CB0TcmIUlLclbNyxAhVI5brQml1ggZUSpUVuRSnaEAI1VkhhD5HFylt-igkZQO0KNeAp9BAtNv6Bzx-a4Nb29TWDs_rD9jW6xA8fgIXPMR7vLCNDzs8Dr5uVrgPePK17-LKtj37GLrGp0t0Vtltgqu_O0Tvz5Ny_JLNX6ez8cM8c1yqNqNLvmRSee0Et1wCWHBKM82qnHLH80JayapKOFmRJWfekdwvCwZCCfA0l3yIbo-7-xg-O0it2YQuNv1Lw6gSnBMpRN8ix5aLIaUIldnHemfjt6HEHMyZ3pw5mDN_5nrk5ojUAPBfV7qgUnP-CxpLaYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174330544</pqid></control><display><type>article</type><title>The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds</title><source>IEEE Electronic Library (IEL)</source><creator>Merhav, Neri</creator><creatorcontrib>Merhav, Neri</creatorcontrib><description>The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general function that depends only on the joint empirical distribution of the output vector and the code word. This framework allows both mismatched versions and universal versions of the likelihood decoder, as well as the corresponding ordinary deterministic decoders, among many others. We provide a direct analysis method that yields the exact random coding exponent (as opposed to separate upper bounds and lower bounds that turn out to be compatible, which were derived earlier by Scarlett et al.). We also extend the result from pure channel coding to combined source and channel coding (random binning followed by random channel coding) with side information available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even though the stochastic likelihood decoder is suboptimal.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2689787</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel coding ; Coding ; Context ; Decoders ; Empirical analysis ; Entropy ; expurgated exponent ; likelihood decoder ; Lower bounds ; Maximum likelihood decoding ; Monte Carlo methods ; random binning ; random coding exponent ; source–channel coding ; Stochastic decoder ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2017-08, Vol.63 (8), p.5039-5051</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-1b3b257d8c43a35eeaec78282f613c3695a52ff4c5f0b32dc06db92e474ed1653</citedby><cites>FETCH-LOGICAL-c357t-1b3b257d8c43a35eeaec78282f613c3695a52ff4c5f0b32dc06db92e474ed1653</cites><orcidid>0000-0002-9547-3243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891583$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7891583$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Merhav, Neri</creatorcontrib><title>The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general function that depends only on the joint empirical distribution of the output vector and the code word. This framework allows both mismatched versions and universal versions of the likelihood decoder, as well as the corresponding ordinary deterministic decoders, among many others. We provide a direct analysis method that yields the exact random coding exponent (as opposed to separate upper bounds and lower bounds that turn out to be compatible, which were derived earlier by Scarlett et al.). We also extend the result from pure channel coding to combined source and channel coding (random binning followed by random channel coding) with side information available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even though the stochastic likelihood decoder is suboptimal.</description><subject>Channel coding</subject><subject>Coding</subject><subject>Context</subject><subject>Decoders</subject><subject>Empirical analysis</subject><subject>Entropy</subject><subject>expurgated exponent</subject><subject>likelihood decoder</subject><subject>Lower bounds</subject><subject>Maximum likelihood decoding</subject><subject>Monte Carlo methods</subject><subject>random binning</subject><subject>random coding exponent</subject><subject>source–channel coding</subject><subject>Stochastic decoder</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TjLutNZaKAh1XIc0edNObSc1mQH11zul4upx4Z774CB0TcmIUlLclbNyxAhVI5brQml1ggZUSpUVuRSnaEAI1VkhhD5HFylt-igkZQO0KNeAp9BAtNv6Bzx-a4Nb29TWDs_rD9jW6xA8fgIXPMR7vLCNDzs8Dr5uVrgPePK17-LKtj37GLrGp0t0Vtltgqu_O0Tvz5Ny_JLNX6ez8cM8c1yqNqNLvmRSee0Et1wCWHBKM82qnHLH80JayapKOFmRJWfekdwvCwZCCfA0l3yIbo-7-xg-O0it2YQuNv1Lw6gSnBMpRN8ix5aLIaUIldnHemfjt6HEHMyZ3pw5mDN_5nrk5ojUAPBfV7qgUnP-CxpLaYo</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Merhav, Neri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9547-3243</orcidid></search><sort><creationdate>20170801</creationdate><title>The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds</title><author>Merhav, Neri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-1b3b257d8c43a35eeaec78282f613c3695a52ff4c5f0b32dc06db92e474ed1653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Channel coding</topic><topic>Coding</topic><topic>Context</topic><topic>Decoders</topic><topic>Empirical analysis</topic><topic>Entropy</topic><topic>expurgated exponent</topic><topic>likelihood decoder</topic><topic>Lower bounds</topic><topic>Maximum likelihood decoding</topic><topic>Monte Carlo methods</topic><topic>random binning</topic><topic>random coding exponent</topic><topic>source–channel coding</topic><topic>Stochastic decoder</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merhav, Neri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Merhav, Neri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>63</volume><issue>8</issue><spage>5039</spage><epage>5051</epage><pages>5039-5051</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general function that depends only on the joint empirical distribution of the output vector and the code word. This framework allows both mismatched versions and universal versions of the likelihood decoder, as well as the corresponding ordinary deterministic decoders, among many others. We provide a direct analysis method that yields the exact random coding exponent (as opposed to separate upper bounds and lower bounds that turn out to be compatible, which were derived earlier by Scarlett et al.). We also extend the result from pure channel coding to combined source and channel coding (random binning followed by random channel coding) with side information available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even though the stochastic likelihood decoder is suboptimal.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2689787</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9547-3243</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2017-08, Vol.63 (8), p.5039-5051 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_7891583 |
source | IEEE Electronic Library (IEL) |
subjects | Channel coding Coding Context Decoders Empirical analysis Entropy expurgated exponent likelihood decoder Lower bounds Maximum likelihood decoding Monte Carlo methods random binning random coding exponent source–channel coding Stochastic decoder Upper bounds |
title | The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20Stochastic%20Likelihood%20Decoder:%20Random%20Coding%20and%20Expurgated%20Bounds&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Merhav,%20Neri&rft.date=2017-08-01&rft.volume=63&rft.issue=8&rft.spage=5039&rft.epage=5051&rft.pages=5039-5051&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2689787&rft_dat=%3Cproquest_RIE%3E2174330544%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174330544&rft_id=info:pmid/&rft_ieee_id=7891583&rfr_iscdi=true |