The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds

The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-08, Vol.63 (8), p.5039-5051
1. Verfasser: Merhav, Neri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5051
container_issue 8
container_start_page 5039
container_title IEEE transactions on information theory
container_volume 63
creator Merhav, Neri
description The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general function that depends only on the joint empirical distribution of the output vector and the code word. This framework allows both mismatched versions and universal versions of the likelihood decoder, as well as the corresponding ordinary deterministic decoders, among many others. We provide a direct analysis method that yields the exact random coding exponent (as opposed to separate upper bounds and lower bounds that turn out to be compatible, which were derived earlier by Scarlett et al.). We also extend the result from pure channel coding to combined source and channel coding (random binning followed by random channel coding) with side information available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even though the stochastic likelihood decoder is suboptimal.
doi_str_mv 10.1109/TIT.2017.2689787
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7891583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7891583</ieee_id><sourcerecordid>2174330544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-1b3b257d8c43a35eeaec78282f613c3695a52ff4c5f0b32dc06db92e474ed1653</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TjLutNZaKAh1XIc0edNObSc1mQH11zul4upx4Z774CB0TcmIUlLclbNyxAhVI5brQml1ggZUSpUVuRSnaEAI1VkhhD5HFylt-igkZQO0KNeAp9BAtNv6Bzx-a4Nb29TWDs_rD9jW6xA8fgIXPMR7vLCNDzs8Dr5uVrgPePK17-LKtj37GLrGp0t0Vtltgqu_O0Tvz5Ny_JLNX6ez8cM8c1yqNqNLvmRSee0Et1wCWHBKM82qnHLH80JayapKOFmRJWfekdwvCwZCCfA0l3yIbo-7-xg-O0it2YQuNv1Lw6gSnBMpRN8ix5aLIaUIldnHemfjt6HEHMyZ3pw5mDN_5nrk5ojUAPBfV7qgUnP-CxpLaYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174330544</pqid></control><display><type>article</type><title>The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds</title><source>IEEE Electronic Library (IEL)</source><creator>Merhav, Neri</creator><creatorcontrib>Merhav, Neri</creatorcontrib><description>The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general function that depends only on the joint empirical distribution of the output vector and the code word. This framework allows both mismatched versions and universal versions of the likelihood decoder, as well as the corresponding ordinary deterministic decoders, among many others. We provide a direct analysis method that yields the exact random coding exponent (as opposed to separate upper bounds and lower bounds that turn out to be compatible, which were derived earlier by Scarlett et al.). We also extend the result from pure channel coding to combined source and channel coding (random binning followed by random channel coding) with side information available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even though the stochastic likelihood decoder is suboptimal.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2017.2689787</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Channel coding ; Coding ; Context ; Decoders ; Empirical analysis ; Entropy ; expurgated exponent ; likelihood decoder ; Lower bounds ; Maximum likelihood decoding ; Monte Carlo methods ; random binning ; random coding exponent ; source–channel coding ; Stochastic decoder ; Upper bounds</subject><ispartof>IEEE transactions on information theory, 2017-08, Vol.63 (8), p.5039-5051</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-1b3b257d8c43a35eeaec78282f613c3695a52ff4c5f0b32dc06db92e474ed1653</citedby><cites>FETCH-LOGICAL-c357t-1b3b257d8c43a35eeaec78282f613c3695a52ff4c5f0b32dc06db92e474ed1653</cites><orcidid>0000-0002-9547-3243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7891583$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7891583$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Merhav, Neri</creatorcontrib><title>The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general function that depends only on the joint empirical distribution of the output vector and the code word. This framework allows both mismatched versions and universal versions of the likelihood decoder, as well as the corresponding ordinary deterministic decoders, among many others. We provide a direct analysis method that yields the exact random coding exponent (as opposed to separate upper bounds and lower bounds that turn out to be compatible, which were derived earlier by Scarlett et al.). We also extend the result from pure channel coding to combined source and channel coding (random binning followed by random channel coding) with side information available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even though the stochastic likelihood decoder is suboptimal.</description><subject>Channel coding</subject><subject>Coding</subject><subject>Context</subject><subject>Decoders</subject><subject>Empirical analysis</subject><subject>Entropy</subject><subject>expurgated exponent</subject><subject>likelihood decoder</subject><subject>Lower bounds</subject><subject>Maximum likelihood decoding</subject><subject>Monte Carlo methods</subject><subject>random binning</subject><subject>random coding exponent</subject><subject>source–channel coding</subject><subject>Stochastic decoder</subject><subject>Upper bounds</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8TjLutNZaKAh1XIc0edNObSc1mQH11zul4upx4Z774CB0TcmIUlLclbNyxAhVI5brQml1ggZUSpUVuRSnaEAI1VkhhD5HFylt-igkZQO0KNeAp9BAtNv6Bzx-a4Nb29TWDs_rD9jW6xA8fgIXPMR7vLCNDzs8Dr5uVrgPePK17-LKtj37GLrGp0t0Vtltgqu_O0Tvz5Ny_JLNX6ez8cM8c1yqNqNLvmRSee0Et1wCWHBKM82qnHLH80JayapKOFmRJWfekdwvCwZCCfA0l3yIbo-7-xg-O0it2YQuNv1Lw6gSnBMpRN8ix5aLIaUIldnHemfjt6HEHMyZ3pw5mDN_5nrk5ojUAPBfV7qgUnP-CxpLaYo</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Merhav, Neri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9547-3243</orcidid></search><sort><creationdate>20170801</creationdate><title>The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds</title><author>Merhav, Neri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-1b3b257d8c43a35eeaec78282f613c3695a52ff4c5f0b32dc06db92e474ed1653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Channel coding</topic><topic>Coding</topic><topic>Context</topic><topic>Decoders</topic><topic>Empirical analysis</topic><topic>Entropy</topic><topic>expurgated exponent</topic><topic>likelihood decoder</topic><topic>Lower bounds</topic><topic>Maximum likelihood decoding</topic><topic>Monte Carlo methods</topic><topic>random binning</topic><topic>random coding exponent</topic><topic>source–channel coding</topic><topic>Stochastic decoder</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merhav, Neri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Merhav, Neri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>63</volume><issue>8</issue><spage>5039</spage><epage>5051</epage><pages>5039-5051</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The likelihood decoder is a stochastic decoder that selects the decoded message at random, using the posterior distribution of the true underlying message given the channel output. In this paper, we study a generalized version of this decoder, where the posterior is proportional to a general function that depends only on the joint empirical distribution of the output vector and the code word. This framework allows both mismatched versions and universal versions of the likelihood decoder, as well as the corresponding ordinary deterministic decoders, among many others. We provide a direct analysis method that yields the exact random coding exponent (as opposed to separate upper bounds and lower bounds that turn out to be compatible, which were derived earlier by Scarlett et al.). We also extend the result from pure channel coding to combined source and channel coding (random binning followed by random channel coding) with side information available to the decoder. Finally, returning to pure channel coding, we derive also an expurgated exponent for the stochastic likelihood decoder, which turns out to be at least as tight (and in some cases, strictly so) as the classical expurgated exponent of the maximum likelihood decoder, even though the stochastic likelihood decoder is suboptimal.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2017.2689787</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9547-3243</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2017-08, Vol.63 (8), p.5039-5051
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_7891583
source IEEE Electronic Library (IEL)
subjects Channel coding
Coding
Context
Decoders
Empirical analysis
Entropy
expurgated exponent
likelihood decoder
Lower bounds
Maximum likelihood decoding
Monte Carlo methods
random binning
random coding exponent
source–channel coding
Stochastic decoder
Upper bounds
title The Generalized Stochastic Likelihood Decoder: Random Coding and Expurgated Bounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20Stochastic%20Likelihood%20Decoder:%20Random%20Coding%20and%20Expurgated%20Bounds&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Merhav,%20Neri&rft.date=2017-08-01&rft.volume=63&rft.issue=8&rft.spage=5039&rft.epage=5051&rft.pages=5039-5051&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2017.2689787&rft_dat=%3Cproquest_RIE%3E2174330544%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174330544&rft_id=info:pmid/&rft_ieee_id=7891583&rfr_iscdi=true