Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms
In this technical note, fractional-order congestion control systems are introduced for the first time. In comparison with the conventional integer-order dual congestion control algorithms, the fractional control algorithms are more accurate and versatile. Bifurcation theory in fractional-order diffe...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2017-09, Vol.62 (9), p.4819-4826 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4826 |
---|---|
container_issue | 9 |
container_start_page | 4819 |
container_title | IEEE transactions on automatic control |
container_volume | 62 |
creator | Xiao, Min Zheng, Wei Xing Jiang, Guoping Cao, Jinde |
description | In this technical note, fractional-order congestion control systems are introduced for the first time. In comparison with the conventional integer-order dual congestion control algorithms, the fractional control algorithms are more accurate and versatile. Bifurcation theory in fractional-order differential equations is still an outstanding problem. Sufficient conditions for the occurrence of Hopf bifurcations are extended from integer-order dynamical systems to fractional-order cases. Then, these conditions are used to establish the existence of Hopf bifurcations for the delayed fractional-order model of dual congestion control algorithms proposed in this note. Finally, the onsets of bifurcations are identified, where Hopf bifurcations occur and a family of oscillations bifurcate from the equilibrium. Illustrative examples are also provided to demonstrate the theoretical results. |
doi_str_mv | 10.1109/TAC.2017.2688583 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7888989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7888989</ieee_id><sourcerecordid>10_1109_TAC_2017_2688583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-68ef1a62f72948fe0162a98f166227fa106e58ffe1713f061b6391df4ee5b3583</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqVwR-LiF0jx2omzPpaUAlKlHigSt8hN1sXIbZCdHvr2pLTitD-aWc1-jN2DmAAI87iaVhMpoJxIjVigumAjKArMZCHVJRsJAZgZifqa3aT0PYw6z2HEPt97u_bB9wdudy1_8m4fG9v7bsc7x2cU7IFaPo-2Oe5syJaxpchnext41e02lP60Q9vHLvBp2HTR91_bdMuunA2J7s51zD7mz6vqNVssX96q6SJrFIg-00gOrJaulCZHR0MuaQ060FrK0lkQmgp0jqAE5YSGtVYGWpcTFWs1_Dlm4nS3iV1KkVz9E_3WxkMNoj6SqQcy9ZFMfSYzWB5OFk9E__ISEQ0a9QuXT1-u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Min ; Zheng, Wei Xing ; Jiang, Guoping ; Cao, Jinde</creator><creatorcontrib>Xiao, Min ; Zheng, Wei Xing ; Jiang, Guoping ; Cao, Jinde</creatorcontrib><description>In this technical note, fractional-order congestion control systems are introduced for the first time. In comparison with the conventional integer-order dual congestion control algorithms, the fractional control algorithms are more accurate and versatile. Bifurcation theory in fractional-order differential equations is still an outstanding problem. Sufficient conditions for the occurrence of Hopf bifurcations are extended from integer-order dynamical systems to fractional-order cases. Then, these conditions are used to establish the existence of Hopf bifurcations for the delayed fractional-order model of dual congestion control algorithms proposed in this note. Finally, the onsets of bifurcations are identified, where Hopf bifurcations occur and a family of oscillations bifurcate from the equilibrium. Illustrative examples are also provided to demonstrate the theoretical results.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2017.2688583</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bifurcation ; Congestion control ; Differential equations ; fractional-order dynamical systems ; Heuristic algorithms ; hopf bifurcation ; Mathematical model ; Numerical stability ; stability ; Stability criteria</subject><ispartof>IEEE transactions on automatic control, 2017-09, Vol.62 (9), p.4819-4826</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-68ef1a62f72948fe0162a98f166227fa106e58ffe1713f061b6391df4ee5b3583</citedby><cites>FETCH-LOGICAL-c310t-68ef1a62f72948fe0162a98f166227fa106e58ffe1713f061b6391df4ee5b3583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7888989$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7888989$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Min</creatorcontrib><creatorcontrib>Zheng, Wei Xing</creatorcontrib><creatorcontrib>Jiang, Guoping</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><title>Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>In this technical note, fractional-order congestion control systems are introduced for the first time. In comparison with the conventional integer-order dual congestion control algorithms, the fractional control algorithms are more accurate and versatile. Bifurcation theory in fractional-order differential equations is still an outstanding problem. Sufficient conditions for the occurrence of Hopf bifurcations are extended from integer-order dynamical systems to fractional-order cases. Then, these conditions are used to establish the existence of Hopf bifurcations for the delayed fractional-order model of dual congestion control algorithms proposed in this note. Finally, the onsets of bifurcations are identified, where Hopf bifurcations occur and a family of oscillations bifurcate from the equilibrium. Illustrative examples are also provided to demonstrate the theoretical results.</description><subject>Bifurcation</subject><subject>Congestion control</subject><subject>Differential equations</subject><subject>fractional-order dynamical systems</subject><subject>Heuristic algorithms</subject><subject>hopf bifurcation</subject><subject>Mathematical model</subject><subject>Numerical stability</subject><subject>stability</subject><subject>Stability criteria</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqVwR-LiF0jx2omzPpaUAlKlHigSt8hN1sXIbZCdHvr2pLTitD-aWc1-jN2DmAAI87iaVhMpoJxIjVigumAjKArMZCHVJRsJAZgZifqa3aT0PYw6z2HEPt97u_bB9wdudy1_8m4fG9v7bsc7x2cU7IFaPo-2Oe5syJaxpchnext41e02lP60Q9vHLvBp2HTR91_bdMuunA2J7s51zD7mz6vqNVssX96q6SJrFIg-00gOrJaulCZHR0MuaQ060FrK0lkQmgp0jqAE5YSGtVYGWpcTFWs1_Dlm4nS3iV1KkVz9E_3WxkMNoj6SqQcy9ZFMfSYzWB5OFk9E__ISEQ0a9QuXT1-u</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Xiao, Min</creator><creator>Zheng, Wei Xing</creator><creator>Jiang, Guoping</creator><creator>Cao, Jinde</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201709</creationdate><title>Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms</title><author>Xiao, Min ; Zheng, Wei Xing ; Jiang, Guoping ; Cao, Jinde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-68ef1a62f72948fe0162a98f166227fa106e58ffe1713f061b6391df4ee5b3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bifurcation</topic><topic>Congestion control</topic><topic>Differential equations</topic><topic>fractional-order dynamical systems</topic><topic>Heuristic algorithms</topic><topic>hopf bifurcation</topic><topic>Mathematical model</topic><topic>Numerical stability</topic><topic>stability</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Min</creatorcontrib><creatorcontrib>Zheng, Wei Xing</creatorcontrib><creatorcontrib>Jiang, Guoping</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Min</au><au>Zheng, Wei Xing</au><au>Jiang, Guoping</au><au>Cao, Jinde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2017-09</date><risdate>2017</risdate><volume>62</volume><issue>9</issue><spage>4819</spage><epage>4826</epage><pages>4819-4826</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>In this technical note, fractional-order congestion control systems are introduced for the first time. In comparison with the conventional integer-order dual congestion control algorithms, the fractional control algorithms are more accurate and versatile. Bifurcation theory in fractional-order differential equations is still an outstanding problem. Sufficient conditions for the occurrence of Hopf bifurcations are extended from integer-order dynamical systems to fractional-order cases. Then, these conditions are used to establish the existence of Hopf bifurcations for the delayed fractional-order model of dual congestion control algorithms proposed in this note. Finally, the onsets of bifurcations are identified, where Hopf bifurcations occur and a family of oscillations bifurcate from the equilibrium. Illustrative examples are also provided to demonstrate the theoretical results.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2017.2688583</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2017-09, Vol.62 (9), p.4819-4826 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_7888989 |
source | IEEE Electronic Library (IEL) |
subjects | Bifurcation Congestion control Differential equations fractional-order dynamical systems Heuristic algorithms hopf bifurcation Mathematical model Numerical stability stability Stability criteria |
title | Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20Bifurcation%20of%20Delayed%20Fractional-Order%20Dual%20Congestion%20Control%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Xiao,%20Min&rft.date=2017-09&rft.volume=62&rft.issue=9&rft.spage=4819&rft.epage=4826&rft.pages=4819-4826&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2017.2688583&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2017_2688583%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7888989&rfr_iscdi=true |