E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials
We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2017-06, Vol.53 (6), p.1-4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 53 |
creator | Nitas, M. Antonopoulos, C. S. Yioultsis, T. V. |
description | We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector basis functions for magnetic flux density. The resulting eigenmode problem is linear, and it enforces periodic boundary conditions in a simple manner via appropriate field transformations and does not exhibit spurious modes. Moreover, it can provide accurate complex-k dispersion diagrams, in terms of both propagation and attenuation constant, while it is also able to deal with either propagating or evanescent modes, including those with oblique propagation directions. |
doi_str_mv | 10.1109/TMAG.2017.2683459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7879805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7879805</ieee_id><sourcerecordid>1904836427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e2894e18c10fadfe099e68a5fbeed09ead02a0add208acc06010d083b55aebb13</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-d7N_kWGVbhRYF63nJbmY1pbtpk6zQb2-WFk-PmXlv4P0IuWcwYwzE02Y9X85iYMUsznmSZuKCTJhIWQSQi0syAWA8EmmeXpMb57ZhTDMGE3Ioo2da6m_sO6OQLozthp302vS0NZb6H6TzXu6OTjtqWroyzh2p7BUtf2WPrsHe03VIOqp7-oFWG6Ub-unt0PjBhvXoXaOXnfThKnfully1QfDurFPytSg3L6_R6n359jJfRU0sEh9hzEWKjDcMWqlaBCEw5zJra0QFAqWCWIJUKgYumwZyYKCAJ3WWSaxrlkzJ4-nv3prDgM5XWzPY0MVVTEDKkzyNi-BiJ1djQzWLbbW3upP2WDGoRrLVSLYayVZnsiHzcMpoRPz3F7wQHLLkD_gldk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904836427</pqid></control><display><type>article</type><title>E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials</title><source>IEEE Electronic Library (IEL)</source><creator>Nitas, M. ; Antonopoulos, C. S. ; Yioultsis, T. V.</creator><creatorcontrib>Nitas, M. ; Antonopoulos, C. S. ; Yioultsis, T. V.</creatorcontrib><description>We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector basis functions for magnetic flux density. The resulting eigenmode problem is linear, and it enforces periodic boundary conditions in a simple manner via appropriate field transformations and does not exhibit spurious modes. Moreover, it can provide accurate complex-k dispersion diagrams, in terms of both propagation and attenuation constant, while it is also able to deal with either propagating or evanescent modes, including those with oblique propagation directions.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2683459</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Basis functions ; Boundary conditions ; Dispersion ; Eigenmode formulation ; Eigenvalues and eigenfunctions ; Electric fields ; evanescent modes ; Finite element analysis ; Finite element method ; Flux density ; Magnetic flux ; Magnetism ; Mathematical analysis ; Metamaterials ; Periodic structures ; Photonic crystals ; Propagation constant ; Propagation modes ; Transformations ; Waveguides</subject><ispartof>IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e2894e18c10fadfe099e68a5fbeed09ead02a0add208acc06010d083b55aebb13</citedby><cites>FETCH-LOGICAL-c293t-e2894e18c10fadfe099e68a5fbeed09ead02a0add208acc06010d083b55aebb13</cites><orcidid>0000-0002-6712-8936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7879805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7879805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nitas, M.</creatorcontrib><creatorcontrib>Antonopoulos, C. S.</creatorcontrib><creatorcontrib>Yioultsis, T. V.</creatorcontrib><title>E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector basis functions for magnetic flux density. The resulting eigenmode problem is linear, and it enforces periodic boundary conditions in a simple manner via appropriate field transformations and does not exhibit spurious modes. Moreover, it can provide accurate complex-k dispersion diagrams, in terms of both propagation and attenuation constant, while it is also able to deal with either propagating or evanescent modes, including those with oblique propagation directions.</description><subject>Attenuation</subject><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Dispersion</subject><subject>Eigenmode formulation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electric fields</subject><subject>evanescent modes</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Metamaterials</subject><subject>Periodic structures</subject><subject>Photonic crystals</subject><subject>Propagation constant</subject><subject>Propagation modes</subject><subject>Transformations</subject><subject>Waveguides</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-d7N_kWGVbhRYF63nJbmY1pbtpk6zQb2-WFk-PmXlv4P0IuWcwYwzE02Y9X85iYMUsznmSZuKCTJhIWQSQi0syAWA8EmmeXpMb57ZhTDMGE3Ioo2da6m_sO6OQLozthp302vS0NZb6H6TzXu6OTjtqWroyzh2p7BUtf2WPrsHe03VIOqp7-oFWG6Ub-unt0PjBhvXoXaOXnfThKnfully1QfDurFPytSg3L6_R6n359jJfRU0sEh9hzEWKjDcMWqlaBCEw5zJra0QFAqWCWIJUKgYumwZyYKCAJ3WWSaxrlkzJ4-nv3prDgM5XWzPY0MVVTEDKkzyNi-BiJ1djQzWLbbW3upP2WDGoRrLVSLYayVZnsiHzcMpoRPz3F7wQHLLkD_gldk4</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Nitas, M.</creator><creator>Antonopoulos, C. S.</creator><creator>Yioultsis, T. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6712-8936</orcidid></search><sort><creationdate>20170601</creationdate><title>E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials</title><author>Nitas, M. ; Antonopoulos, C. S. ; Yioultsis, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e2894e18c10fadfe099e68a5fbeed09ead02a0add208acc06010d083b55aebb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Attenuation</topic><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Dispersion</topic><topic>Eigenmode formulation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electric fields</topic><topic>evanescent modes</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Metamaterials</topic><topic>Periodic structures</topic><topic>Photonic crystals</topic><topic>Propagation constant</topic><topic>Propagation modes</topic><topic>Transformations</topic><topic>Waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Nitas, M.</creatorcontrib><creatorcontrib>Antonopoulos, C. S.</creatorcontrib><creatorcontrib>Yioultsis, T. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nitas, M.</au><au>Antonopoulos, C. S.</au><au>Yioultsis, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>53</volume><issue>6</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector basis functions for magnetic flux density. The resulting eigenmode problem is linear, and it enforces periodic boundary conditions in a simple manner via appropriate field transformations and does not exhibit spurious modes. Moreover, it can provide accurate complex-k dispersion diagrams, in terms of both propagation and attenuation constant, while it is also able to deal with either propagating or evanescent modes, including those with oblique propagation directions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2683459</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6712-8936</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_7879805 |
source | IEEE Electronic Library (IEL) |
subjects | Attenuation Basis functions Boundary conditions Dispersion Eigenmode formulation Eigenvalues and eigenfunctions Electric fields evanescent modes Finite element analysis Finite element method Flux density Magnetic flux Magnetism Mathematical analysis Metamaterials Periodic structures Photonic crystals Propagation constant Propagation modes Transformations Waveguides |
title | E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-B%20Eigenmode%20Formulation%20for%20the%20Analysis%20of%20Lossy%20and%20Evanescent%20Modes%20in%20Periodic%20Structures%20and%20Metamaterials&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Nitas,%20M.&rft.date=2017-06-01&rft.volume=53&rft.issue=6&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2683459&rft_dat=%3Cproquest_RIE%3E1904836427%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904836427&rft_id=info:pmid/&rft_ieee_id=7879805&rfr_iscdi=true |