E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials

We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2017-06, Vol.53 (6), p.1-4
Hauptverfasser: Nitas, M., Antonopoulos, C. S., Yioultsis, T. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 6
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 53
creator Nitas, M.
Antonopoulos, C. S.
Yioultsis, T. V.
description We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector basis functions for magnetic flux density. The resulting eigenmode problem is linear, and it enforces periodic boundary conditions in a simple manner via appropriate field transformations and does not exhibit spurious modes. Moreover, it can provide accurate complex-k dispersion diagrams, in terms of both propagation and attenuation constant, while it is also able to deal with either propagating or evanescent modes, including those with oblique propagation directions.
doi_str_mv 10.1109/TMAG.2017.2683459
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7879805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7879805</ieee_id><sourcerecordid>1904836427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e2894e18c10fadfe099e68a5fbeed09ead02a0add208acc06010d083b55aebb13</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-d7N_kWGVbhRYF63nJbmY1pbtpk6zQb2-WFk-PmXlv4P0IuWcwYwzE02Y9X85iYMUsznmSZuKCTJhIWQSQi0syAWA8EmmeXpMb57ZhTDMGE3Ioo2da6m_sO6OQLozthp302vS0NZb6H6TzXu6OTjtqWroyzh2p7BUtf2WPrsHe03VIOqp7-oFWG6Ub-unt0PjBhvXoXaOXnfThKnfully1QfDurFPytSg3L6_R6n359jJfRU0sEh9hzEWKjDcMWqlaBCEw5zJra0QFAqWCWIJUKgYumwZyYKCAJ3WWSaxrlkzJ4-nv3prDgM5XWzPY0MVVTEDKkzyNi-BiJ1djQzWLbbW3upP2WDGoRrLVSLYayVZnsiHzcMpoRPz3F7wQHLLkD_gldk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904836427</pqid></control><display><type>article</type><title>E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials</title><source>IEEE Electronic Library (IEL)</source><creator>Nitas, M. ; Antonopoulos, C. S. ; Yioultsis, T. V.</creator><creatorcontrib>Nitas, M. ; Antonopoulos, C. S. ; Yioultsis, T. V.</creatorcontrib><description>We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector basis functions for magnetic flux density. The resulting eigenmode problem is linear, and it enforces periodic boundary conditions in a simple manner via appropriate field transformations and does not exhibit spurious modes. Moreover, it can provide accurate complex-k dispersion diagrams, in terms of both propagation and attenuation constant, while it is also able to deal with either propagating or evanescent modes, including those with oblique propagation directions.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2683459</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attenuation ; Basis functions ; Boundary conditions ; Dispersion ; Eigenmode formulation ; Eigenvalues and eigenfunctions ; Electric fields ; evanescent modes ; Finite element analysis ; Finite element method ; Flux density ; Magnetic flux ; Magnetism ; Mathematical analysis ; Metamaterials ; Periodic structures ; Photonic crystals ; Propagation constant ; Propagation modes ; Transformations ; Waveguides</subject><ispartof>IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e2894e18c10fadfe099e68a5fbeed09ead02a0add208acc06010d083b55aebb13</citedby><cites>FETCH-LOGICAL-c293t-e2894e18c10fadfe099e68a5fbeed09ead02a0add208acc06010d083b55aebb13</cites><orcidid>0000-0002-6712-8936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7879805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7879805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nitas, M.</creatorcontrib><creatorcontrib>Antonopoulos, C. S.</creatorcontrib><creatorcontrib>Yioultsis, T. V.</creatorcontrib><title>E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector basis functions for magnetic flux density. The resulting eigenmode problem is linear, and it enforces periodic boundary conditions in a simple manner via appropriate field transformations and does not exhibit spurious modes. Moreover, it can provide accurate complex-k dispersion diagrams, in terms of both propagation and attenuation constant, while it is also able to deal with either propagating or evanescent modes, including those with oblique propagation directions.</description><subject>Attenuation</subject><subject>Basis functions</subject><subject>Boundary conditions</subject><subject>Dispersion</subject><subject>Eigenmode formulation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Electric fields</subject><subject>evanescent modes</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Flux density</subject><subject>Magnetic flux</subject><subject>Magnetism</subject><subject>Mathematical analysis</subject><subject>Metamaterials</subject><subject>Periodic structures</subject><subject>Photonic crystals</subject><subject>Propagation constant</subject><subject>Propagation modes</subject><subject>Transformations</subject><subject>Waveguides</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-d7N_kWGVbhRYF63nJbmY1pbtpk6zQb2-WFk-PmXlv4P0IuWcwYwzE02Y9X85iYMUsznmSZuKCTJhIWQSQi0syAWA8EmmeXpMb57ZhTDMGE3Ioo2da6m_sO6OQLozthp302vS0NZb6H6TzXu6OTjtqWroyzh2p7BUtf2WPrsHe03VIOqp7-oFWG6Ub-unt0PjBhvXoXaOXnfThKnfully1QfDurFPytSg3L6_R6n359jJfRU0sEh9hzEWKjDcMWqlaBCEw5zJra0QFAqWCWIJUKgYumwZyYKCAJ3WWSaxrlkzJ4-nv3prDgM5XWzPY0MVVTEDKkzyNi-BiJ1djQzWLbbW3upP2WDGoRrLVSLYayVZnsiHzcMpoRPz3F7wQHLLkD_gldk4</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Nitas, M.</creator><creator>Antonopoulos, C. S.</creator><creator>Yioultsis, T. V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6712-8936</orcidid></search><sort><creationdate>20170601</creationdate><title>E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials</title><author>Nitas, M. ; Antonopoulos, C. S. ; Yioultsis, T. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e2894e18c10fadfe099e68a5fbeed09ead02a0add208acc06010d083b55aebb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Attenuation</topic><topic>Basis functions</topic><topic>Boundary conditions</topic><topic>Dispersion</topic><topic>Eigenmode formulation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Electric fields</topic><topic>evanescent modes</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Flux density</topic><topic>Magnetic flux</topic><topic>Magnetism</topic><topic>Mathematical analysis</topic><topic>Metamaterials</topic><topic>Periodic structures</topic><topic>Photonic crystals</topic><topic>Propagation constant</topic><topic>Propagation modes</topic><topic>Transformations</topic><topic>Waveguides</topic><toplevel>online_resources</toplevel><creatorcontrib>Nitas, M.</creatorcontrib><creatorcontrib>Antonopoulos, C. S.</creatorcontrib><creatorcontrib>Yioultsis, T. V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nitas, M.</au><au>Antonopoulos, C. S.</au><au>Yioultsis, T. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>53</volume><issue>6</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>We present here a 3-D E-B linear eigenmode formulation for the analysis of periodic structures, including lossy periodic waveguides, photonic crystals, and metamaterials. The proposed finite-element formulation utilizes proper H (curl) vector basis functions for the electric field and H (div) vector basis functions for magnetic flux density. The resulting eigenmode problem is linear, and it enforces periodic boundary conditions in a simple manner via appropriate field transformations and does not exhibit spurious modes. Moreover, it can provide accurate complex-k dispersion diagrams, in terms of both propagation and attenuation constant, while it is also able to deal with either propagating or evanescent modes, including those with oblique propagation directions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2683459</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6712-8936</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_7879805
source IEEE Electronic Library (IEL)
subjects Attenuation
Basis functions
Boundary conditions
Dispersion
Eigenmode formulation
Eigenvalues and eigenfunctions
Electric fields
evanescent modes
Finite element analysis
Finite element method
Flux density
Magnetic flux
Magnetism
Mathematical analysis
Metamaterials
Periodic structures
Photonic crystals
Propagation constant
Propagation modes
Transformations
Waveguides
title E-B Eigenmode Formulation for the Analysis of Lossy and Evanescent Modes in Periodic Structures and Metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-B%20Eigenmode%20Formulation%20for%20the%20Analysis%20of%20Lossy%20and%20Evanescent%20Modes%20in%20Periodic%20Structures%20and%20Metamaterials&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Nitas,%20M.&rft.date=2017-06-01&rft.volume=53&rft.issue=6&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2683459&rft_dat=%3Cproquest_RIE%3E1904836427%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904836427&rft_id=info:pmid/&rft_ieee_id=7879805&rfr_iscdi=true