An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground

The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2017-08, Vol.66 (8), p.2065-2073
Hauptverfasser: Lu, Jiazhen, Lei, Chaohua, Liang, Shufang, Yang, Yanqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2073
container_issue 8
container_start_page 2065
container_title IEEE transactions on instrumentation and measurement
container_volume 66
creator Lu, Jiazhen
Lei, Chaohua
Liang, Shufang
Yang, Yanqiang
description The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman filter that can simultaneously estimate bias, scale factor, misalignments of inertial measurement unit (IMU), and installation errors of star sensor. The difference between the star vector measured by the star sensor and the gold reference generated by the star simulator is used as an observation. On the basis of observability to all parameters, the accuracy is greatly enhanced through an iterative method. Better than previous separate calibration of INS and star sensor, the proposed method offers an advantage in that installation error is slightly influenced by IMU drift and device precision. The experimental results demonstrate that all estimated parameters have good stability and repeatability, with the maximum attitude error of integrated navigation less than 6" after compensation, compared with 20" using the traditional method. It is shown that the proposed calibration method can efficiently improve the navigation performance of stellar-INS, which has been extensively used in shipborne systems, military aircraft, and missile systems.
doi_str_mv 10.1109/TIM.2017.2674758
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7879364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7879364</ieee_id><sourcerecordid>2221347161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8aff0dccabdb642f910baae1dcb3e9f40df3c38b8764d6ce17b87f3eec0c98423</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC59R8bbI5lqK1UD_AevESstmJbEl3a3Zb6H_flC2e5sF7b2b4IXRPyYRSop9Wi7cJI1RNmFRC5cUFGtE8V1hLyS7RiBBaYC1yeY1uum5NCFFSqBH6mTbZNAT8aaPdQA8x-zp0PWzwEvYQspkNdRltX7dN5ttk9hCCjXjRQOxrG7J3u69_B38oZknNY7trqlt05W3o4O48x-j75Xk1e8XLj_liNl1ixzTtcWG9J5VztqxKKZjXlJTWAq1cyUF7QSrPHS_KIj1cSQdUJek5gCNOF4LxMXoc9m5j-7eDrjfrdhebdNIwxigXikqaUmRIudh2XQRvtrHe2HgwlJgTQZMImhNBcyaYKg9DpQaA_7gqlOZS8CMG524H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221347161</pqid></control><display><type>article</type><title>An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Jiazhen ; Lei, Chaohua ; Liang, Shufang ; Yang, Yanqiang</creator><creatorcontrib>Lu, Jiazhen ; Lei, Chaohua ; Liang, Shufang ; Yang, Yanqiang</creatorcontrib><description>The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman filter that can simultaneously estimate bias, scale factor, misalignments of inertial measurement unit (IMU), and installation errors of star sensor. The difference between the star vector measured by the star sensor and the gold reference generated by the star simulator is used as an observation. On the basis of observability to all parameters, the accuracy is greatly enhanced through an iterative method. Better than previous separate calibration of INS and star sensor, the proposed method offers an advantage in that installation error is slightly influenced by IMU drift and device precision. The experimental results demonstrate that all estimated parameters have good stability and repeatability, with the maximum attitude error of integrated navigation less than 6" after compensation, compared with 20" using the traditional method. It is shown that the proposed calibration method can efficiently improve the navigation performance of stellar-INS, which has been extensively used in shipborne systems, military aircraft, and missile systems.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2017.2674758</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>12-position rotations ; Accelerometers ; Aircraft navigation ; all-parameter calibration ; Attitude stability ; Calibration ; Earth ; Error detection ; Gold ; Inertial navigation ; Inertial platforms ; installation errors of star sensor ; Kalman filters ; linear Kalman filter ; Military aircraft ; Military aviation ; Missile systems ; Navigation systems ; Observability (systems) ; Parameter estimation ; Sensors ; star sensor ; stellar-inertial navigation system (INS) ; Switches</subject><ispartof>IEEE transactions on instrumentation and measurement, 2017-08, Vol.66 (8), p.2065-2073</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8aff0dccabdb642f910baae1dcb3e9f40df3c38b8764d6ce17b87f3eec0c98423</citedby><cites>FETCH-LOGICAL-c291t-8aff0dccabdb642f910baae1dcb3e9f40df3c38b8764d6ce17b87f3eec0c98423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7879364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7879364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Jiazhen</creatorcontrib><creatorcontrib>Lei, Chaohua</creatorcontrib><creatorcontrib>Liang, Shufang</creatorcontrib><creatorcontrib>Yang, Yanqiang</creatorcontrib><title>An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman filter that can simultaneously estimate bias, scale factor, misalignments of inertial measurement unit (IMU), and installation errors of star sensor. The difference between the star vector measured by the star sensor and the gold reference generated by the star simulator is used as an observation. On the basis of observability to all parameters, the accuracy is greatly enhanced through an iterative method. Better than previous separate calibration of INS and star sensor, the proposed method offers an advantage in that installation error is slightly influenced by IMU drift and device precision. The experimental results demonstrate that all estimated parameters have good stability and repeatability, with the maximum attitude error of integrated navigation less than 6" after compensation, compared with 20" using the traditional method. It is shown that the proposed calibration method can efficiently improve the navigation performance of stellar-INS, which has been extensively used in shipborne systems, military aircraft, and missile systems.</description><subject>12-position rotations</subject><subject>Accelerometers</subject><subject>Aircraft navigation</subject><subject>all-parameter calibration</subject><subject>Attitude stability</subject><subject>Calibration</subject><subject>Earth</subject><subject>Error detection</subject><subject>Gold</subject><subject>Inertial navigation</subject><subject>Inertial platforms</subject><subject>installation errors of star sensor</subject><subject>Kalman filters</subject><subject>linear Kalman filter</subject><subject>Military aircraft</subject><subject>Military aviation</subject><subject>Missile systems</subject><subject>Navigation systems</subject><subject>Observability (systems)</subject><subject>Parameter estimation</subject><subject>Sensors</subject><subject>star sensor</subject><subject>stellar-inertial navigation system (INS)</subject><subject>Switches</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC59R8bbI5lqK1UD_AevESstmJbEl3a3Zb6H_flC2e5sF7b2b4IXRPyYRSop9Wi7cJI1RNmFRC5cUFGtE8V1hLyS7RiBBaYC1yeY1uum5NCFFSqBH6mTbZNAT8aaPdQA8x-zp0PWzwEvYQspkNdRltX7dN5ttk9hCCjXjRQOxrG7J3u69_B38oZknNY7trqlt05W3o4O48x-j75Xk1e8XLj_liNl1ixzTtcWG9J5VztqxKKZjXlJTWAq1cyUF7QSrPHS_KIj1cSQdUJek5gCNOF4LxMXoc9m5j-7eDrjfrdhebdNIwxigXikqaUmRIudh2XQRvtrHe2HgwlJgTQZMImhNBcyaYKg9DpQaA_7gqlOZS8CMG524H</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Lu, Jiazhen</creator><creator>Lei, Chaohua</creator><creator>Liang, Shufang</creator><creator>Yang, Yanqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170801</creationdate><title>An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground</title><author>Lu, Jiazhen ; Lei, Chaohua ; Liang, Shufang ; Yang, Yanqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8aff0dccabdb642f910baae1dcb3e9f40df3c38b8764d6ce17b87f3eec0c98423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>12-position rotations</topic><topic>Accelerometers</topic><topic>Aircraft navigation</topic><topic>all-parameter calibration</topic><topic>Attitude stability</topic><topic>Calibration</topic><topic>Earth</topic><topic>Error detection</topic><topic>Gold</topic><topic>Inertial navigation</topic><topic>Inertial platforms</topic><topic>installation errors of star sensor</topic><topic>Kalman filters</topic><topic>linear Kalman filter</topic><topic>Military aircraft</topic><topic>Military aviation</topic><topic>Missile systems</topic><topic>Navigation systems</topic><topic>Observability (systems)</topic><topic>Parameter estimation</topic><topic>Sensors</topic><topic>star sensor</topic><topic>stellar-inertial navigation system (INS)</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jiazhen</creatorcontrib><creatorcontrib>Lei, Chaohua</creatorcontrib><creatorcontrib>Liang, Shufang</creatorcontrib><creatorcontrib>Yang, Yanqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Jiazhen</au><au>Lei, Chaohua</au><au>Liang, Shufang</au><au>Yang, Yanqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>66</volume><issue>8</issue><spage>2065</spage><epage>2073</epage><pages>2065-2073</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman filter that can simultaneously estimate bias, scale factor, misalignments of inertial measurement unit (IMU), and installation errors of star sensor. The difference between the star vector measured by the star sensor and the gold reference generated by the star simulator is used as an observation. On the basis of observability to all parameters, the accuracy is greatly enhanced through an iterative method. Better than previous separate calibration of INS and star sensor, the proposed method offers an advantage in that installation error is slightly influenced by IMU drift and device precision. The experimental results demonstrate that all estimated parameters have good stability and repeatability, with the maximum attitude error of integrated navigation less than 6" after compensation, compared with 20" using the traditional method. It is shown that the proposed calibration method can efficiently improve the navigation performance of stellar-INS, which has been extensively used in shipborne systems, military aircraft, and missile systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2017.2674758</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2017-08, Vol.66 (8), p.2065-2073
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_7879364
source IEEE Electronic Library (IEL)
subjects 12-position rotations
Accelerometers
Aircraft navigation
all-parameter calibration
Attitude stability
Calibration
Earth
Error detection
Gold
Inertial navigation
Inertial platforms
installation errors of star sensor
Kalman filters
linear Kalman filter
Military aircraft
Military aviation
Missile systems
Navigation systems
Observability (systems)
Parameter estimation
Sensors
star sensor
stellar-inertial navigation system (INS)
Switches
title An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20All-Parameter%20System-Level%20Calibration%20for%20Stellar-Inertial%20Navigation%20System%20on%20Ground&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lu,%20Jiazhen&rft.date=2017-08-01&rft.volume=66&rft.issue=8&rft.spage=2065&rft.epage=2073&rft.pages=2065-2073&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2017.2674758&rft_dat=%3Cproquest_RIE%3E2221347161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221347161&rft_id=info:pmid/&rft_ieee_id=7879364&rfr_iscdi=true