An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground
The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2017-08, Vol.66 (8), p.2065-2073 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2073 |
---|---|
container_issue | 8 |
container_start_page | 2065 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 66 |
creator | Lu, Jiazhen Lei, Chaohua Liang, Shufang Yang, Yanqiang |
description | The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman filter that can simultaneously estimate bias, scale factor, misalignments of inertial measurement unit (IMU), and installation errors of star sensor. The difference between the star vector measured by the star sensor and the gold reference generated by the star simulator is used as an observation. On the basis of observability to all parameters, the accuracy is greatly enhanced through an iterative method. Better than previous separate calibration of INS and star sensor, the proposed method offers an advantage in that installation error is slightly influenced by IMU drift and device precision. The experimental results demonstrate that all estimated parameters have good stability and repeatability, with the maximum attitude error of integrated navigation less than 6" after compensation, compared with 20" using the traditional method. It is shown that the proposed calibration method can efficiently improve the navigation performance of stellar-INS, which has been extensively used in shipborne systems, military aircraft, and missile systems. |
doi_str_mv | 10.1109/TIM.2017.2674758 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7879364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7879364</ieee_id><sourcerecordid>2221347161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-8aff0dccabdb642f910baae1dcb3e9f40df3c38b8764d6ce17b87f3eec0c98423</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC59R8bbI5lqK1UD_AevESstmJbEl3a3Zb6H_flC2e5sF7b2b4IXRPyYRSop9Wi7cJI1RNmFRC5cUFGtE8V1hLyS7RiBBaYC1yeY1uum5NCFFSqBH6mTbZNAT8aaPdQA8x-zp0PWzwEvYQspkNdRltX7dN5ttk9hCCjXjRQOxrG7J3u69_B38oZknNY7trqlt05W3o4O48x-j75Xk1e8XLj_liNl1ixzTtcWG9J5VztqxKKZjXlJTWAq1cyUF7QSrPHS_KIj1cSQdUJek5gCNOF4LxMXoc9m5j-7eDrjfrdhebdNIwxigXikqaUmRIudh2XQRvtrHe2HgwlJgTQZMImhNBcyaYKg9DpQaA_7gqlOZS8CMG524H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221347161</pqid></control><display><type>article</type><title>An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Jiazhen ; Lei, Chaohua ; Liang, Shufang ; Yang, Yanqiang</creator><creatorcontrib>Lu, Jiazhen ; Lei, Chaohua ; Liang, Shufang ; Yang, Yanqiang</creatorcontrib><description>The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman filter that can simultaneously estimate bias, scale factor, misalignments of inertial measurement unit (IMU), and installation errors of star sensor. The difference between the star vector measured by the star sensor and the gold reference generated by the star simulator is used as an observation. On the basis of observability to all parameters, the accuracy is greatly enhanced through an iterative method. Better than previous separate calibration of INS and star sensor, the proposed method offers an advantage in that installation error is slightly influenced by IMU drift and device precision. The experimental results demonstrate that all estimated parameters have good stability and repeatability, with the maximum attitude error of integrated navigation less than 6" after compensation, compared with 20" using the traditional method. It is shown that the proposed calibration method can efficiently improve the navigation performance of stellar-INS, which has been extensively used in shipborne systems, military aircraft, and missile systems.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2017.2674758</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>12-position rotations ; Accelerometers ; Aircraft navigation ; all-parameter calibration ; Attitude stability ; Calibration ; Earth ; Error detection ; Gold ; Inertial navigation ; Inertial platforms ; installation errors of star sensor ; Kalman filters ; linear Kalman filter ; Military aircraft ; Military aviation ; Missile systems ; Navigation systems ; Observability (systems) ; Parameter estimation ; Sensors ; star sensor ; stellar-inertial navigation system (INS) ; Switches</subject><ispartof>IEEE transactions on instrumentation and measurement, 2017-08, Vol.66 (8), p.2065-2073</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-8aff0dccabdb642f910baae1dcb3e9f40df3c38b8764d6ce17b87f3eec0c98423</citedby><cites>FETCH-LOGICAL-c291t-8aff0dccabdb642f910baae1dcb3e9f40df3c38b8764d6ce17b87f3eec0c98423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7879364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7879364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Jiazhen</creatorcontrib><creatorcontrib>Lei, Chaohua</creatorcontrib><creatorcontrib>Liang, Shufang</creatorcontrib><creatorcontrib>Yang, Yanqiang</creatorcontrib><title>An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman filter that can simultaneously estimate bias, scale factor, misalignments of inertial measurement unit (IMU), and installation errors of star sensor. The difference between the star vector measured by the star sensor and the gold reference generated by the star simulator is used as an observation. On the basis of observability to all parameters, the accuracy is greatly enhanced through an iterative method. Better than previous separate calibration of INS and star sensor, the proposed method offers an advantage in that installation error is slightly influenced by IMU drift and device precision. The experimental results demonstrate that all estimated parameters have good stability and repeatability, with the maximum attitude error of integrated navigation less than 6" after compensation, compared with 20" using the traditional method. It is shown that the proposed calibration method can efficiently improve the navigation performance of stellar-INS, which has been extensively used in shipborne systems, military aircraft, and missile systems.</description><subject>12-position rotations</subject><subject>Accelerometers</subject><subject>Aircraft navigation</subject><subject>all-parameter calibration</subject><subject>Attitude stability</subject><subject>Calibration</subject><subject>Earth</subject><subject>Error detection</subject><subject>Gold</subject><subject>Inertial navigation</subject><subject>Inertial platforms</subject><subject>installation errors of star sensor</subject><subject>Kalman filters</subject><subject>linear Kalman filter</subject><subject>Military aircraft</subject><subject>Military aviation</subject><subject>Missile systems</subject><subject>Navigation systems</subject><subject>Observability (systems)</subject><subject>Parameter estimation</subject><subject>Sensors</subject><subject>star sensor</subject><subject>stellar-inertial navigation system (INS)</subject><subject>Switches</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC59R8bbI5lqK1UD_AevESstmJbEl3a3Zb6H_flC2e5sF7b2b4IXRPyYRSop9Wi7cJI1RNmFRC5cUFGtE8V1hLyS7RiBBaYC1yeY1uum5NCFFSqBH6mTbZNAT8aaPdQA8x-zp0PWzwEvYQspkNdRltX7dN5ttk9hCCjXjRQOxrG7J3u69_B38oZknNY7trqlt05W3o4O48x-j75Xk1e8XLj_liNl1ixzTtcWG9J5VztqxKKZjXlJTWAq1cyUF7QSrPHS_KIj1cSQdUJek5gCNOF4LxMXoc9m5j-7eDrjfrdhebdNIwxigXikqaUmRIudh2XQRvtrHe2HgwlJgTQZMImhNBcyaYKg9DpQaA_7gqlOZS8CMG524H</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Lu, Jiazhen</creator><creator>Lei, Chaohua</creator><creator>Liang, Shufang</creator><creator>Yang, Yanqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20170801</creationdate><title>An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground</title><author>Lu, Jiazhen ; Lei, Chaohua ; Liang, Shufang ; Yang, Yanqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-8aff0dccabdb642f910baae1dcb3e9f40df3c38b8764d6ce17b87f3eec0c98423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>12-position rotations</topic><topic>Accelerometers</topic><topic>Aircraft navigation</topic><topic>all-parameter calibration</topic><topic>Attitude stability</topic><topic>Calibration</topic><topic>Earth</topic><topic>Error detection</topic><topic>Gold</topic><topic>Inertial navigation</topic><topic>Inertial platforms</topic><topic>installation errors of star sensor</topic><topic>Kalman filters</topic><topic>linear Kalman filter</topic><topic>Military aircraft</topic><topic>Military aviation</topic><topic>Missile systems</topic><topic>Navigation systems</topic><topic>Observability (systems)</topic><topic>Parameter estimation</topic><topic>Sensors</topic><topic>star sensor</topic><topic>stellar-inertial navigation system (INS)</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jiazhen</creatorcontrib><creatorcontrib>Lei, Chaohua</creatorcontrib><creatorcontrib>Liang, Shufang</creatorcontrib><creatorcontrib>Yang, Yanqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Jiazhen</au><au>Lei, Chaohua</au><au>Liang, Shufang</au><au>Yang, Yanqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>66</volume><issue>8</issue><spage>2065</spage><epage>2073</epage><pages>2065-2073</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>The calibration, in particular about the installation errors of a star sensor, is a vital problem when improving the accuracy of stellar-inertial navigation system (INS). This paper proposed an all-parameter calibration method for a groundbased stellar-INS with 12-position rotations, using a Kalman filter that can simultaneously estimate bias, scale factor, misalignments of inertial measurement unit (IMU), and installation errors of star sensor. The difference between the star vector measured by the star sensor and the gold reference generated by the star simulator is used as an observation. On the basis of observability to all parameters, the accuracy is greatly enhanced through an iterative method. Better than previous separate calibration of INS and star sensor, the proposed method offers an advantage in that installation error is slightly influenced by IMU drift and device precision. The experimental results demonstrate that all estimated parameters have good stability and repeatability, with the maximum attitude error of integrated navigation less than 6" after compensation, compared with 20" using the traditional method. It is shown that the proposed calibration method can efficiently improve the navigation performance of stellar-INS, which has been extensively used in shipborne systems, military aircraft, and missile systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2017.2674758</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2017-08, Vol.66 (8), p.2065-2073 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_7879364 |
source | IEEE Electronic Library (IEL) |
subjects | 12-position rotations Accelerometers Aircraft navigation all-parameter calibration Attitude stability Calibration Earth Error detection Gold Inertial navigation Inertial platforms installation errors of star sensor Kalman filters linear Kalman filter Military aircraft Military aviation Missile systems Navigation systems Observability (systems) Parameter estimation Sensors star sensor stellar-inertial navigation system (INS) Switches |
title | An All-Parameter System-Level Calibration for Stellar-Inertial Navigation System on Ground |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20All-Parameter%20System-Level%20Calibration%20for%20Stellar-Inertial%20Navigation%20System%20on%20Ground&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Lu,%20Jiazhen&rft.date=2017-08-01&rft.volume=66&rft.issue=8&rft.spage=2065&rft.epage=2073&rft.pages=2065-2073&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2017.2674758&rft_dat=%3Cproquest_RIE%3E2221347161%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221347161&rft_id=info:pmid/&rft_ieee_id=7879364&rfr_iscdi=true |