Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents

The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2017-04, Vol.45 (4), p.761-767
Hauptverfasser: Tanisli, Murat, Tasal, Erol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 767
container_issue 4
container_start_page 761
container_title IEEE transactions on plasma science
container_volume 45
creator Tanisli, Murat
Tasal, Erol
description The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-pressure plasma jets of argon (Ar) and neon (Ne) are generated using an ac-power supply with a frequency of 24 kHz and a voltage of 12 kV at room temperature. For the first time in the world in this context, the vibrational spectra Fourier Transform Infrared of coumarin molecule (abbreviated here as 1CMN) dissolved in ethanol and methanol are analyzed after the atmospheric-pressure plasma treatment (APPT) of argon and neon. Plasma jet spectroscopy is used to investigate FT-IR spectra of coumarin before and after APPT process, which takes only 3 min. Also, the changes of structure and the interaction of the plasma and the molecule (coumarin) dissolved in solvents are examined, and the vibration modes of the 1CMN molecule before and after APPT are investigated. Thus, the final structure of the molecule can be explained with respect to the vibrational characteristics of the 1CMN molecule, and the photochemistry of this compound is studied under the conditions of this experiment.
doi_str_mv 10.1109/TPS.2017.2673855
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7873309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7873309</ieee_id><sourcerecordid>1889548306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d8702a2a18f030caee95672d6af5b98af15462473219ee1a540ea7f272727de53</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJstkkx1LrF0ULrTchxN2Jbml3a7Ir-N-bpSJzmDfw3szwI-SSwYQxMDfr5WrCgakJL5TQUh6RETPCZEYoeUxGAEZkQjNxSs5i3ACwXAIfkbe591h2kbaePmPbUNdUdBo-kpp2uzbuPzHUZbYMGGMfkC63Lu4cfcIh0tBZ2-9cqBt6W8fYbr-xomlYDarp4jk58W4b8eKvj8nr3Xw9e8gWL_ePs-kiK7lhXVZpBdxxx7QHAaVDNLJQvCqcl-9GO89kXvBcCc4MInMyB3TKczVUhVKMyfVh7z60Xz3Gzm7aPjTppGVaG5lrAUVywcFVhjbGgN7uQ52-_7EM7MDQJoZ2YGj_GKbI1SFSI-K_XWklROL5C5xEbKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889548306</pqid></control><display><type>article</type><title>Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents</title><source>IEEE Electronic Library (IEL)</source><creator>Tanisli, Murat ; Tasal, Erol</creator><creatorcontrib>Tanisli, Murat ; Tasal, Erol</creatorcontrib><description>The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-pressure plasma jets of argon (Ar) and neon (Ne) are generated using an ac-power supply with a frequency of 24 kHz and a voltage of 12 kV at room temperature. For the first time in the world in this context, the vibrational spectra Fourier Transform Infrared of coumarin molecule (abbreviated here as 1CMN) dissolved in ethanol and methanol are analyzed after the atmospheric-pressure plasma treatment (APPT) of argon and neon. Plasma jet spectroscopy is used to investigate FT-IR spectra of coumarin before and after APPT process, which takes only 3 min. Also, the changes of structure and the interaction of the plasma and the molecule (coumarin) dissolved in solvents are examined, and the vibration modes of the 1CMN molecule before and after APPT are investigated. Thus, the final structure of the molecule can be explained with respect to the vibrational characteristics of the 1CMN molecule, and the photochemistry of this compound is studied under the conditions of this experiment.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2017.2673855</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Argon ; Atmospheric pressure ; Atmospheric-pressure plasma jet ; Atmospheric-pressure plasmas ; chemical decomposing ; Coumarin ; coumarin molecule ; Dielectric barrier discharge ; Electric power supplies ; electrical discharge ; Ethanol ; Fourier transforms ; FT-IR spectra ; Infrared spectra ; Infrared spectroscopy ; Jets ; Molecular structure ; Neon ; Photochemistry ; Plasma ; Plasma jets ; plasma photoproduct ; Plasma temperature ; Room temperature ; Solvents ; Spectrum analysis ; Temperature measurement ; Vibration ; Vibration mode ; Vibrational spectra</subject><ispartof>IEEE transactions on plasma science, 2017-04, Vol.45 (4), p.761-767</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d8702a2a18f030caee95672d6af5b98af15462473219ee1a540ea7f272727de53</citedby><cites>FETCH-LOGICAL-c291t-d8702a2a18f030caee95672d6af5b98af15462473219ee1a540ea7f272727de53</cites><orcidid>0000-0001-7578-7344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7873309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7873309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tanisli, Murat</creatorcontrib><creatorcontrib>Tasal, Erol</creatorcontrib><title>Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-pressure plasma jets of argon (Ar) and neon (Ne) are generated using an ac-power supply with a frequency of 24 kHz and a voltage of 12 kV at room temperature. For the first time in the world in this context, the vibrational spectra Fourier Transform Infrared of coumarin molecule (abbreviated here as 1CMN) dissolved in ethanol and methanol are analyzed after the atmospheric-pressure plasma treatment (APPT) of argon and neon. Plasma jet spectroscopy is used to investigate FT-IR spectra of coumarin before and after APPT process, which takes only 3 min. Also, the changes of structure and the interaction of the plasma and the molecule (coumarin) dissolved in solvents are examined, and the vibration modes of the 1CMN molecule before and after APPT are investigated. Thus, the final structure of the molecule can be explained with respect to the vibrational characteristics of the 1CMN molecule, and the photochemistry of this compound is studied under the conditions of this experiment.</description><subject>Argon</subject><subject>Atmospheric pressure</subject><subject>Atmospheric-pressure plasma jet</subject><subject>Atmospheric-pressure plasmas</subject><subject>chemical decomposing</subject><subject>Coumarin</subject><subject>coumarin molecule</subject><subject>Dielectric barrier discharge</subject><subject>Electric power supplies</subject><subject>electrical discharge</subject><subject>Ethanol</subject><subject>Fourier transforms</subject><subject>FT-IR spectra</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Jets</subject><subject>Molecular structure</subject><subject>Neon</subject><subject>Photochemistry</subject><subject>Plasma</subject><subject>Plasma jets</subject><subject>plasma photoproduct</subject><subject>Plasma temperature</subject><subject>Room temperature</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Temperature measurement</subject><subject>Vibration</subject><subject>Vibration mode</subject><subject>Vibrational spectra</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJstkkx1LrF0ULrTchxN2Jbml3a7Ir-N-bpSJzmDfw3szwI-SSwYQxMDfr5WrCgakJL5TQUh6RETPCZEYoeUxGAEZkQjNxSs5i3ACwXAIfkbe591h2kbaePmPbUNdUdBo-kpp2uzbuPzHUZbYMGGMfkC63Lu4cfcIh0tBZ2-9cqBt6W8fYbr-xomlYDarp4jk58W4b8eKvj8nr3Xw9e8gWL_ePs-kiK7lhXVZpBdxxx7QHAaVDNLJQvCqcl-9GO89kXvBcCc4MInMyB3TKczVUhVKMyfVh7z60Xz3Gzm7aPjTppGVaG5lrAUVywcFVhjbGgN7uQ52-_7EM7MDQJoZ2YGj_GKbI1SFSI-K_XWklROL5C5xEbKk</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Tanisli, Murat</creator><creator>Tasal, Erol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7578-7344</orcidid></search><sort><creationdate>20170401</creationdate><title>Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents</title><author>Tanisli, Murat ; Tasal, Erol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d8702a2a18f030caee95672d6af5b98af15462473219ee1a540ea7f272727de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Argon</topic><topic>Atmospheric pressure</topic><topic>Atmospheric-pressure plasma jet</topic><topic>Atmospheric-pressure plasmas</topic><topic>chemical decomposing</topic><topic>Coumarin</topic><topic>coumarin molecule</topic><topic>Dielectric barrier discharge</topic><topic>Electric power supplies</topic><topic>electrical discharge</topic><topic>Ethanol</topic><topic>Fourier transforms</topic><topic>FT-IR spectra</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Jets</topic><topic>Molecular structure</topic><topic>Neon</topic><topic>Photochemistry</topic><topic>Plasma</topic><topic>Plasma jets</topic><topic>plasma photoproduct</topic><topic>Plasma temperature</topic><topic>Room temperature</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Temperature measurement</topic><topic>Vibration</topic><topic>Vibration mode</topic><topic>Vibrational spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanisli, Murat</creatorcontrib><creatorcontrib>Tasal, Erol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tanisli, Murat</au><au>Tasal, Erol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>45</volume><issue>4</issue><spage>761</spage><epage>767</epage><pages>761-767</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-pressure plasma jets of argon (Ar) and neon (Ne) are generated using an ac-power supply with a frequency of 24 kHz and a voltage of 12 kV at room temperature. For the first time in the world in this context, the vibrational spectra Fourier Transform Infrared of coumarin molecule (abbreviated here as 1CMN) dissolved in ethanol and methanol are analyzed after the atmospheric-pressure plasma treatment (APPT) of argon and neon. Plasma jet spectroscopy is used to investigate FT-IR spectra of coumarin before and after APPT process, which takes only 3 min. Also, the changes of structure and the interaction of the plasma and the molecule (coumarin) dissolved in solvents are examined, and the vibration modes of the 1CMN molecule before and after APPT are investigated. Thus, the final structure of the molecule can be explained with respect to the vibrational characteristics of the 1CMN molecule, and the photochemistry of this compound is studied under the conditions of this experiment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2017.2673855</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7578-7344</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2017-04, Vol.45 (4), p.761-767
issn 0093-3813
1939-9375
language eng
recordid cdi_ieee_primary_7873309
source IEEE Electronic Library (IEL)
subjects Argon
Atmospheric pressure
Atmospheric-pressure plasma jet
Atmospheric-pressure plasmas
chemical decomposing
Coumarin
coumarin molecule
Dielectric barrier discharge
Electric power supplies
electrical discharge
Ethanol
Fourier transforms
FT-IR spectra
Infrared spectra
Infrared spectroscopy
Jets
Molecular structure
Neon
Photochemistry
Plasma
Plasma jets
plasma photoproduct
Plasma temperature
Room temperature
Solvents
Spectrum analysis
Temperature measurement
Vibration
Vibration mode
Vibrational spectra
title Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Neon%20and%20Argon%20Atmospheric-Pressure%20Plasma%20Jets%20on%20Coumarin%20Dissolved%20in%20Solvents&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Tanisli,%20Murat&rft.date=2017-04-01&rft.volume=45&rft.issue=4&rft.spage=761&rft.epage=767&rft.pages=761-767&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2017.2673855&rft_dat=%3Cproquest_RIE%3E1889548306%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889548306&rft_id=info:pmid/&rft_ieee_id=7873309&rfr_iscdi=true