Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents
The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-press...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2017-04, Vol.45 (4), p.761-767 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 767 |
---|---|
container_issue | 4 |
container_start_page | 761 |
container_title | IEEE transactions on plasma science |
container_volume | 45 |
creator | Tanisli, Murat Tasal, Erol |
description | The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-pressure plasma jets of argon (Ar) and neon (Ne) are generated using an ac-power supply with a frequency of 24 kHz and a voltage of 12 kV at room temperature. For the first time in the world in this context, the vibrational spectra Fourier Transform Infrared of coumarin molecule (abbreviated here as 1CMN) dissolved in ethanol and methanol are analyzed after the atmospheric-pressure plasma treatment (APPT) of argon and neon. Plasma jet spectroscopy is used to investigate FT-IR spectra of coumarin before and after APPT process, which takes only 3 min. Also, the changes of structure and the interaction of the plasma and the molecule (coumarin) dissolved in solvents are examined, and the vibration modes of the 1CMN molecule before and after APPT are investigated. Thus, the final structure of the molecule can be explained with respect to the vibrational characteristics of the 1CMN molecule, and the photochemistry of this compound is studied under the conditions of this experiment. |
doi_str_mv | 10.1109/TPS.2017.2673855 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7873309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7873309</ieee_id><sourcerecordid>1889548306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d8702a2a18f030caee95672d6af5b98af15462473219ee1a540ea7f272727de53</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJstkkx1LrF0ULrTchxN2Jbml3a7Ir-N-bpSJzmDfw3szwI-SSwYQxMDfr5WrCgakJL5TQUh6RETPCZEYoeUxGAEZkQjNxSs5i3ACwXAIfkbe591h2kbaePmPbUNdUdBo-kpp2uzbuPzHUZbYMGGMfkC63Lu4cfcIh0tBZ2-9cqBt6W8fYbr-xomlYDarp4jk58W4b8eKvj8nr3Xw9e8gWL_ePs-kiK7lhXVZpBdxxx7QHAaVDNLJQvCqcl-9GO89kXvBcCc4MInMyB3TKczVUhVKMyfVh7z60Xz3Gzm7aPjTppGVaG5lrAUVywcFVhjbGgN7uQ52-_7EM7MDQJoZ2YGj_GKbI1SFSI-K_XWklROL5C5xEbKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1889548306</pqid></control><display><type>article</type><title>Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents</title><source>IEEE Electronic Library (IEL)</source><creator>Tanisli, Murat ; Tasal, Erol</creator><creatorcontrib>Tanisli, Murat ; Tasal, Erol</creatorcontrib><description>The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-pressure plasma jets of argon (Ar) and neon (Ne) are generated using an ac-power supply with a frequency of 24 kHz and a voltage of 12 kV at room temperature. For the first time in the world in this context, the vibrational spectra Fourier Transform Infrared of coumarin molecule (abbreviated here as 1CMN) dissolved in ethanol and methanol are analyzed after the atmospheric-pressure plasma treatment (APPT) of argon and neon. Plasma jet spectroscopy is used to investigate FT-IR spectra of coumarin before and after APPT process, which takes only 3 min. Also, the changes of structure and the interaction of the plasma and the molecule (coumarin) dissolved in solvents are examined, and the vibration modes of the 1CMN molecule before and after APPT are investigated. Thus, the final structure of the molecule can be explained with respect to the vibrational characteristics of the 1CMN molecule, and the photochemistry of this compound is studied under the conditions of this experiment.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2017.2673855</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Argon ; Atmospheric pressure ; Atmospheric-pressure plasma jet ; Atmospheric-pressure plasmas ; chemical decomposing ; Coumarin ; coumarin molecule ; Dielectric barrier discharge ; Electric power supplies ; electrical discharge ; Ethanol ; Fourier transforms ; FT-IR spectra ; Infrared spectra ; Infrared spectroscopy ; Jets ; Molecular structure ; Neon ; Photochemistry ; Plasma ; Plasma jets ; plasma photoproduct ; Plasma temperature ; Room temperature ; Solvents ; Spectrum analysis ; Temperature measurement ; Vibration ; Vibration mode ; Vibrational spectra</subject><ispartof>IEEE transactions on plasma science, 2017-04, Vol.45 (4), p.761-767</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d8702a2a18f030caee95672d6af5b98af15462473219ee1a540ea7f272727de53</citedby><cites>FETCH-LOGICAL-c291t-d8702a2a18f030caee95672d6af5b98af15462473219ee1a540ea7f272727de53</cites><orcidid>0000-0001-7578-7344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7873309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7873309$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tanisli, Murat</creatorcontrib><creatorcontrib>Tasal, Erol</creatorcontrib><title>Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-pressure plasma jets of argon (Ar) and neon (Ne) are generated using an ac-power supply with a frequency of 24 kHz and a voltage of 12 kV at room temperature. For the first time in the world in this context, the vibrational spectra Fourier Transform Infrared of coumarin molecule (abbreviated here as 1CMN) dissolved in ethanol and methanol are analyzed after the atmospheric-pressure plasma treatment (APPT) of argon and neon. Plasma jet spectroscopy is used to investigate FT-IR spectra of coumarin before and after APPT process, which takes only 3 min. Also, the changes of structure and the interaction of the plasma and the molecule (coumarin) dissolved in solvents are examined, and the vibration modes of the 1CMN molecule before and after APPT are investigated. Thus, the final structure of the molecule can be explained with respect to the vibrational characteristics of the 1CMN molecule, and the photochemistry of this compound is studied under the conditions of this experiment.</description><subject>Argon</subject><subject>Atmospheric pressure</subject><subject>Atmospheric-pressure plasma jet</subject><subject>Atmospheric-pressure plasmas</subject><subject>chemical decomposing</subject><subject>Coumarin</subject><subject>coumarin molecule</subject><subject>Dielectric barrier discharge</subject><subject>Electric power supplies</subject><subject>electrical discharge</subject><subject>Ethanol</subject><subject>Fourier transforms</subject><subject>FT-IR spectra</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Jets</subject><subject>Molecular structure</subject><subject>Neon</subject><subject>Photochemistry</subject><subject>Plasma</subject><subject>Plasma jets</subject><subject>plasma photoproduct</subject><subject>Plasma temperature</subject><subject>Room temperature</subject><subject>Solvents</subject><subject>Spectrum analysis</subject><subject>Temperature measurement</subject><subject>Vibration</subject><subject>Vibration mode</subject><subject>Vibrational spectra</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89ZJstkkx1LrF0ULrTchxN2Jbml3a7Ir-N-bpSJzmDfw3szwI-SSwYQxMDfr5WrCgakJL5TQUh6RETPCZEYoeUxGAEZkQjNxSs5i3ACwXAIfkbe591h2kbaePmPbUNdUdBo-kpp2uzbuPzHUZbYMGGMfkC63Lu4cfcIh0tBZ2-9cqBt6W8fYbr-xomlYDarp4jk58W4b8eKvj8nr3Xw9e8gWL_ePs-kiK7lhXVZpBdxxx7QHAaVDNLJQvCqcl-9GO89kXvBcCc4MInMyB3TKczVUhVKMyfVh7z60Xz3Gzm7aPjTppGVaG5lrAUVywcFVhjbGgN7uQ52-_7EM7MDQJoZ2YGj_GKbI1SFSI-K_XWklROL5C5xEbKk</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Tanisli, Murat</creator><creator>Tasal, Erol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7578-7344</orcidid></search><sort><creationdate>20170401</creationdate><title>Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents</title><author>Tanisli, Murat ; Tasal, Erol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d8702a2a18f030caee95672d6af5b98af15462473219ee1a540ea7f272727de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Argon</topic><topic>Atmospheric pressure</topic><topic>Atmospheric-pressure plasma jet</topic><topic>Atmospheric-pressure plasmas</topic><topic>chemical decomposing</topic><topic>Coumarin</topic><topic>coumarin molecule</topic><topic>Dielectric barrier discharge</topic><topic>Electric power supplies</topic><topic>electrical discharge</topic><topic>Ethanol</topic><topic>Fourier transforms</topic><topic>FT-IR spectra</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Jets</topic><topic>Molecular structure</topic><topic>Neon</topic><topic>Photochemistry</topic><topic>Plasma</topic><topic>Plasma jets</topic><topic>plasma photoproduct</topic><topic>Plasma temperature</topic><topic>Room temperature</topic><topic>Solvents</topic><topic>Spectrum analysis</topic><topic>Temperature measurement</topic><topic>Vibration</topic><topic>Vibration mode</topic><topic>Vibrational spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanisli, Murat</creatorcontrib><creatorcontrib>Tasal, Erol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tanisli, Murat</au><au>Tasal, Erol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>45</volume><issue>4</issue><spage>761</spage><epage>767</epage><pages>761-767</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>The atmospheric-pressure plasma jets and their applications discussed here are a topic of great interest in the fields of science and technology. As is referred to in this paper, the plasma generated in a laboratory setting is described as the dielectric barrier discharge like. The atmospheric-pressure plasma jets of argon (Ar) and neon (Ne) are generated using an ac-power supply with a frequency of 24 kHz and a voltage of 12 kV at room temperature. For the first time in the world in this context, the vibrational spectra Fourier Transform Infrared of coumarin molecule (abbreviated here as 1CMN) dissolved in ethanol and methanol are analyzed after the atmospheric-pressure plasma treatment (APPT) of argon and neon. Plasma jet spectroscopy is used to investigate FT-IR spectra of coumarin before and after APPT process, which takes only 3 min. Also, the changes of structure and the interaction of the plasma and the molecule (coumarin) dissolved in solvents are examined, and the vibration modes of the 1CMN molecule before and after APPT are investigated. Thus, the final structure of the molecule can be explained with respect to the vibrational characteristics of the 1CMN molecule, and the photochemistry of this compound is studied under the conditions of this experiment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2017.2673855</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7578-7344</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2017-04, Vol.45 (4), p.761-767 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_ieee_primary_7873309 |
source | IEEE Electronic Library (IEL) |
subjects | Argon Atmospheric pressure Atmospheric-pressure plasma jet Atmospheric-pressure plasmas chemical decomposing Coumarin coumarin molecule Dielectric barrier discharge Electric power supplies electrical discharge Ethanol Fourier transforms FT-IR spectra Infrared spectra Infrared spectroscopy Jets Molecular structure Neon Photochemistry Plasma Plasma jets plasma photoproduct Plasma temperature Room temperature Solvents Spectrum analysis Temperature measurement Vibration Vibration mode Vibrational spectra |
title | Effects of Neon and Argon Atmospheric-Pressure Plasma Jets on Coumarin Dissolved in Solvents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A57%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Neon%20and%20Argon%20Atmospheric-Pressure%20Plasma%20Jets%20on%20Coumarin%20Dissolved%20in%20Solvents&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Tanisli,%20Murat&rft.date=2017-04-01&rft.volume=45&rft.issue=4&rft.spage=761&rft.epage=767&rft.pages=761-767&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2017.2673855&rft_dat=%3Cproquest_RIE%3E1889548306%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1889548306&rft_id=info:pmid/&rft_ieee_id=7873309&rfr_iscdi=true |