Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control

This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2018-01, Vol.26 (1), p.114-127
Hauptverfasser: Moser, Dominik, Schmied, Roman, Waschl, Harald, del Re, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 114
container_title IEEE transactions on control systems technology
container_volume 26
creator Moser, Dominik
Schmied, Roman
Waschl, Harald
del Re, Luigi
description This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicle's velocity. In a deterministic framework, the prediction errors lead to constraint violations and to harsh control reactions. Instead, the suggested method considers errors, and limits the probability of a constraint violation. A conditional linear Gauss model is developed and trained with real measurements to estimate the probability distribution of the future velocity of the preceding vehicle. The prediction model is used to evaluate two different stochastic MPC approaches. On the one hand, an MPC with individual chance constraints is applied. On the other hand, samples are drawn from the conditional Gaussian model and used for a scenario-based optimization approach. Finally, both developed control strategies are evaluated and compared against a standard deterministic MPC. The evaluation of the controllers shows a significant reduction of the fuel consumption compared with standard adaptive cruise control algorithms.
doi_str_mv 10.1109/TCST.2017.2658193
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7862832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7862832</ieee_id><sourcerecordid>1974443423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6b44033cb6aa089fe9aa1f4a809f016d2e42edd9a9b92390504c4587888e45873</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d7-weS7AqVBTTnpfNZqJbYhN3U9F_b0KKp3dgnncGHoSuCV4QgvXdJi82C4pJtqBSKKLZCZoRIVSKlRSnw4wlS6Vg8hxdxLjDmHBBsxl6WzXw48sGkqKzzu_fk2Vlu95_Q5KHg49DtPs-tE2yjeO26Fv3YWPvXfLcVtAkrwEq76bCRF6is9o2Ea6OOUfb1f0mf0zXLw9P-XKdOqpZn8qSc8yYK6W1WOkatLWk5lZhXWMiKwqcQlVpq0tNmcYCc8eFypRSMCabo9vpbhfarwPE3uzaQ9gPLw3RGeecccoGikyUC22MAWrTBf9pw68h2IzqzKjOjOrMUd3QuZk6HgD--UxJqhhlf-z0acg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974443423</pqid></control><display><type>article</type><title>Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control</title><source>IEEE Electronic Library (IEL)</source><creator>Moser, Dominik ; Schmied, Roman ; Waschl, Harald ; del Re, Luigi</creator><creatorcontrib>Moser, Dominik ; Schmied, Roman ; Waschl, Harald ; del Re, Luigi</creatorcontrib><description>This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicle's velocity. In a deterministic framework, the prediction errors lead to constraint violations and to harsh control reactions. Instead, the suggested method considers errors, and limits the probability of a constraint violation. A conditional linear Gauss model is developed and trained with real measurements to estimate the probability distribution of the future velocity of the preceding vehicle. The prediction model is used to evaluate two different stochastic MPC approaches. On the one hand, an MPC with individual chance constraints is applied. On the other hand, samples are drawn from the conditional Gaussian model and used for a scenario-based optimization approach. Finally, both developed control strategies are evaluated and compared against a standard deterministic MPC. The evaluation of the controllers shows a significant reduction of the fuel consumption compared with standard adaptive cruise control algorithms.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2017.2658193</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; Advanced driver assistance systems ; Constraint modelling ; Cruise control ; cruise control (CC) ; Fuel consumption ; fuel economy ; Fuels ; Gears ; intelligent transportation systems ; Normal distribution ; Optimal control ; Optimization ; Predictive control ; Predictive models ; Probability theory ; Safety ; Stochastic models ; Stochastic processes</subject><ispartof>IEEE transactions on control systems technology, 2018-01, Vol.26 (1), p.114-127</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6b44033cb6aa089fe9aa1f4a809f016d2e42edd9a9b92390504c4587888e45873</citedby><cites>FETCH-LOGICAL-c293t-6b44033cb6aa089fe9aa1f4a809f016d2e42edd9a9b92390504c4587888e45873</cites><orcidid>0000-0003-4663-4036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7862832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7862832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moser, Dominik</creatorcontrib><creatorcontrib>Schmied, Roman</creatorcontrib><creatorcontrib>Waschl, Harald</creatorcontrib><creatorcontrib>del Re, Luigi</creatorcontrib><title>Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicle's velocity. In a deterministic framework, the prediction errors lead to constraint violations and to harsh control reactions. Instead, the suggested method considers errors, and limits the probability of a constraint violation. A conditional linear Gauss model is developed and trained with real measurements to estimate the probability distribution of the future velocity of the preceding vehicle. The prediction model is used to evaluate two different stochastic MPC approaches. On the one hand, an MPC with individual chance constraints is applied. On the other hand, samples are drawn from the conditional Gaussian model and used for a scenario-based optimization approach. Finally, both developed control strategies are evaluated and compared against a standard deterministic MPC. The evaluation of the controllers shows a significant reduction of the fuel consumption compared with standard adaptive cruise control algorithms.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Advanced driver assistance systems</subject><subject>Constraint modelling</subject><subject>Cruise control</subject><subject>cruise control (CC)</subject><subject>Fuel consumption</subject><subject>fuel economy</subject><subject>Fuels</subject><subject>Gears</subject><subject>intelligent transportation systems</subject><subject>Normal distribution</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Probability theory</subject><subject>Safety</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d7-weS7AqVBTTnpfNZqJbYhN3U9F_b0KKp3dgnncGHoSuCV4QgvXdJi82C4pJtqBSKKLZCZoRIVSKlRSnw4wlS6Vg8hxdxLjDmHBBsxl6WzXw48sGkqKzzu_fk2Vlu95_Q5KHg49DtPs-tE2yjeO26Fv3YWPvXfLcVtAkrwEq76bCRF6is9o2Ea6OOUfb1f0mf0zXLw9P-XKdOqpZn8qSc8yYK6W1WOkatLWk5lZhXWMiKwqcQlVpq0tNmcYCc8eFypRSMCabo9vpbhfarwPE3uzaQ9gPLw3RGeecccoGikyUC22MAWrTBf9pw68h2IzqzKjOjOrMUd3QuZk6HgD--UxJqhhlf-z0acg</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Moser, Dominik</creator><creator>Schmied, Roman</creator><creator>Waschl, Harald</creator><creator>del Re, Luigi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4663-4036</orcidid></search><sort><creationdate>201801</creationdate><title>Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control</title><author>Moser, Dominik ; Schmied, Roman ; Waschl, Harald ; del Re, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6b44033cb6aa089fe9aa1f4a809f016d2e42edd9a9b92390504c4587888e45873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Advanced driver assistance systems</topic><topic>Constraint modelling</topic><topic>Cruise control</topic><topic>cruise control (CC)</topic><topic>Fuel consumption</topic><topic>fuel economy</topic><topic>Fuels</topic><topic>Gears</topic><topic>intelligent transportation systems</topic><topic>Normal distribution</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Probability theory</topic><topic>Safety</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, Dominik</creatorcontrib><creatorcontrib>Schmied, Roman</creatorcontrib><creatorcontrib>Waschl, Harald</creatorcontrib><creatorcontrib>del Re, Luigi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moser, Dominik</au><au>Schmied, Roman</au><au>Waschl, Harald</au><au>del Re, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2018-01</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>114</spage><epage>127</epage><pages>114-127</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicle's velocity. In a deterministic framework, the prediction errors lead to constraint violations and to harsh control reactions. Instead, the suggested method considers errors, and limits the probability of a constraint violation. A conditional linear Gauss model is developed and trained with real measurements to estimate the probability distribution of the future velocity of the preceding vehicle. The prediction model is used to evaluate two different stochastic MPC approaches. On the one hand, an MPC with individual chance constraints is applied. On the other hand, samples are drawn from the conditional Gaussian model and used for a scenario-based optimization approach. Finally, both developed control strategies are evaluated and compared against a standard deterministic MPC. The evaluation of the controllers shows a significant reduction of the fuel consumption compared with standard adaptive cruise control algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2017.2658193</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4663-4036</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2018-01, Vol.26 (1), p.114-127
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_7862832
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Adaptive control
Advanced driver assistance systems
Constraint modelling
Cruise control
cruise control (CC)
Fuel consumption
fuel economy
Fuels
Gears
intelligent transportation systems
Normal distribution
Optimal control
Optimization
Predictive control
Predictive models
Probability theory
Safety
Stochastic models
Stochastic processes
title Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Spacing%20Adaptive%20Cruise%20Control%20Using%20Stochastic%20Model%20Predictive%20Control&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Moser,%20Dominik&rft.date=2018-01&rft.volume=26&rft.issue=1&rft.spage=114&rft.epage=127&rft.pages=114-127&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2017.2658193&rft_dat=%3Cproquest_RIE%3E1974443423%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974443423&rft_id=info:pmid/&rft_ieee_id=7862832&rfr_iscdi=true