Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control
This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2018-01, Vol.26 (1), p.114-127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 114 |
container_title | IEEE transactions on control systems technology |
container_volume | 26 |
creator | Moser, Dominik Schmied, Roman Waschl, Harald del Re, Luigi |
description | This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicle's velocity. In a deterministic framework, the prediction errors lead to constraint violations and to harsh control reactions. Instead, the suggested method considers errors, and limits the probability of a constraint violation. A conditional linear Gauss model is developed and trained with real measurements to estimate the probability distribution of the future velocity of the preceding vehicle. The prediction model is used to evaluate two different stochastic MPC approaches. On the one hand, an MPC with individual chance constraints is applied. On the other hand, samples are drawn from the conditional Gaussian model and used for a scenario-based optimization approach. Finally, both developed control strategies are evaluated and compared against a standard deterministic MPC. The evaluation of the controllers shows a significant reduction of the fuel consumption compared with standard adaptive cruise control algorithms. |
doi_str_mv | 10.1109/TCST.2017.2658193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7862832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7862832</ieee_id><sourcerecordid>1974443423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6b44033cb6aa089fe9aa1f4a809f016d2e42edd9a9b92390504c4587888e45873</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d7-weS7AqVBTTnpfNZqJbYhN3U9F_b0KKp3dgnncGHoSuCV4QgvXdJi82C4pJtqBSKKLZCZoRIVSKlRSnw4wlS6Vg8hxdxLjDmHBBsxl6WzXw48sGkqKzzu_fk2Vlu95_Q5KHg49DtPs-tE2yjeO26Fv3YWPvXfLcVtAkrwEq76bCRF6is9o2Ea6OOUfb1f0mf0zXLw9P-XKdOqpZn8qSc8yYK6W1WOkatLWk5lZhXWMiKwqcQlVpq0tNmcYCc8eFypRSMCabo9vpbhfarwPE3uzaQ9gPLw3RGeecccoGikyUC22MAWrTBf9pw68h2IzqzKjOjOrMUd3QuZk6HgD--UxJqhhlf-z0acg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974443423</pqid></control><display><type>article</type><title>Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control</title><source>IEEE Electronic Library (IEL)</source><creator>Moser, Dominik ; Schmied, Roman ; Waschl, Harald ; del Re, Luigi</creator><creatorcontrib>Moser, Dominik ; Schmied, Roman ; Waschl, Harald ; del Re, Luigi</creatorcontrib><description>This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicle's velocity. In a deterministic framework, the prediction errors lead to constraint violations and to harsh control reactions. Instead, the suggested method considers errors, and limits the probability of a constraint violation. A conditional linear Gauss model is developed and trained with real measurements to estimate the probability distribution of the future velocity of the preceding vehicle. The prediction model is used to evaluate two different stochastic MPC approaches. On the one hand, an MPC with individual chance constraints is applied. On the other hand, samples are drawn from the conditional Gaussian model and used for a scenario-based optimization approach. Finally, both developed control strategies are evaluated and compared against a standard deterministic MPC. The evaluation of the controllers shows a significant reduction of the fuel consumption compared with standard adaptive cruise control algorithms.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2017.2658193</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; Advanced driver assistance systems ; Constraint modelling ; Cruise control ; cruise control (CC) ; Fuel consumption ; fuel economy ; Fuels ; Gears ; intelligent transportation systems ; Normal distribution ; Optimal control ; Optimization ; Predictive control ; Predictive models ; Probability theory ; Safety ; Stochastic models ; Stochastic processes</subject><ispartof>IEEE transactions on control systems technology, 2018-01, Vol.26 (1), p.114-127</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6b44033cb6aa089fe9aa1f4a809f016d2e42edd9a9b92390504c4587888e45873</citedby><cites>FETCH-LOGICAL-c293t-6b44033cb6aa089fe9aa1f4a809f016d2e42edd9a9b92390504c4587888e45873</cites><orcidid>0000-0003-4663-4036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7862832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7862832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Moser, Dominik</creatorcontrib><creatorcontrib>Schmied, Roman</creatorcontrib><creatorcontrib>Waschl, Harald</creatorcontrib><creatorcontrib>del Re, Luigi</creatorcontrib><title>Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicle's velocity. In a deterministic framework, the prediction errors lead to constraint violations and to harsh control reactions. Instead, the suggested method considers errors, and limits the probability of a constraint violation. A conditional linear Gauss model is developed and trained with real measurements to estimate the probability distribution of the future velocity of the preceding vehicle. The prediction model is used to evaluate two different stochastic MPC approaches. On the one hand, an MPC with individual chance constraints is applied. On the other hand, samples are drawn from the conditional Gaussian model and used for a scenario-based optimization approach. Finally, both developed control strategies are evaluated and compared against a standard deterministic MPC. The evaluation of the controllers shows a significant reduction of the fuel consumption compared with standard adaptive cruise control algorithms.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Advanced driver assistance systems</subject><subject>Constraint modelling</subject><subject>Cruise control</subject><subject>cruise control (CC)</subject><subject>Fuel consumption</subject><subject>fuel economy</subject><subject>Fuels</subject><subject>Gears</subject><subject>intelligent transportation systems</subject><subject>Normal distribution</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Probability theory</subject><subject>Safety</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d7-weS7AqVBTTnpfNZqJbYhN3U9F_b0KKp3dgnncGHoSuCV4QgvXdJi82C4pJtqBSKKLZCZoRIVSKlRSnw4wlS6Vg8hxdxLjDmHBBsxl6WzXw48sGkqKzzu_fk2Vlu95_Q5KHg49DtPs-tE2yjeO26Fv3YWPvXfLcVtAkrwEq76bCRF6is9o2Ea6OOUfb1f0mf0zXLw9P-XKdOqpZn8qSc8yYK6W1WOkatLWk5lZhXWMiKwqcQlVpq0tNmcYCc8eFypRSMCabo9vpbhfarwPE3uzaQ9gPLw3RGeecccoGikyUC22MAWrTBf9pw68h2IzqzKjOjOrMUd3QuZk6HgD--UxJqhhlf-z0acg</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Moser, Dominik</creator><creator>Schmied, Roman</creator><creator>Waschl, Harald</creator><creator>del Re, Luigi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4663-4036</orcidid></search><sort><creationdate>201801</creationdate><title>Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control</title><author>Moser, Dominik ; Schmied, Roman ; Waschl, Harald ; del Re, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6b44033cb6aa089fe9aa1f4a809f016d2e42edd9a9b92390504c4587888e45873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Advanced driver assistance systems</topic><topic>Constraint modelling</topic><topic>Cruise control</topic><topic>cruise control (CC)</topic><topic>Fuel consumption</topic><topic>fuel economy</topic><topic>Fuels</topic><topic>Gears</topic><topic>intelligent transportation systems</topic><topic>Normal distribution</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Probability theory</topic><topic>Safety</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, Dominik</creatorcontrib><creatorcontrib>Schmied, Roman</creatorcontrib><creatorcontrib>Waschl, Harald</creatorcontrib><creatorcontrib>del Re, Luigi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Moser, Dominik</au><au>Schmied, Roman</au><au>Waschl, Harald</au><au>del Re, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2018-01</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>114</spage><epage>127</epage><pages>114-127</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper proposes a stochastic model predictive control (MPC) approach to optimize the fuel consumption in a vehicle following context. The practical solution of that problem requires solving a constrained moving horizon optimal control problem using a short-term prediction of the preceding vehicle's velocity. In a deterministic framework, the prediction errors lead to constraint violations and to harsh control reactions. Instead, the suggested method considers errors, and limits the probability of a constraint violation. A conditional linear Gauss model is developed and trained with real measurements to estimate the probability distribution of the future velocity of the preceding vehicle. The prediction model is used to evaluate two different stochastic MPC approaches. On the one hand, an MPC with individual chance constraints is applied. On the other hand, samples are drawn from the conditional Gaussian model and used for a scenario-based optimization approach. Finally, both developed control strategies are evaluated and compared against a standard deterministic MPC. The evaluation of the controllers shows a significant reduction of the fuel consumption compared with standard adaptive cruise control algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2017.2658193</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4663-4036</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2018-01, Vol.26 (1), p.114-127 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_7862832 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Adaptive control Advanced driver assistance systems Constraint modelling Cruise control cruise control (CC) Fuel consumption fuel economy Fuels Gears intelligent transportation systems Normal distribution Optimal control Optimization Predictive control Predictive models Probability theory Safety Stochastic models Stochastic processes |
title | Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Spacing%20Adaptive%20Cruise%20Control%20Using%20Stochastic%20Model%20Predictive%20Control&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Moser,%20Dominik&rft.date=2018-01&rft.volume=26&rft.issue=1&rft.spage=114&rft.epage=127&rft.pages=114-127&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2017.2658193&rft_dat=%3Cproquest_RIE%3E1974443423%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974443423&rft_id=info:pmid/&rft_ieee_id=7862832&rfr_iscdi=true |