Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing
Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2017-06, Vol.12 (6), p.1483-1493 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1493 |
---|---|
container_issue | 6 |
container_start_page | 1483 |
container_title | IEEE transactions on information forensics and security |
container_volume | 12 |
creator | Mao, Yunlong Chen, Tingting Zhang, Yuan Wang, Tiancong Zhong, Sheng |
description | Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a lot of security challenges. The problem of revealing secondary users' location information through sensing reports has been reported recently. Unlike any existing work, in this paper we not only address the location privacy issue in the collaborative sensing to be against semi-honest adversaries, but also take malicious adversaries into consideration. We propose efficient schemes to protect secondary users' reports from being revealed in the aggregation process at the fusion center. We rigorously prove that our privacy-preserving collaborative sensing schemes are secure against attacks from both the fusion center and secondary users. We also evaluate our schemes extensively and verify its efficiency and feasibility. |
doi_str_mv | 10.1109/TIFS.2017.2668219 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7850988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7850988</ieee_id><sourcerecordid>10_1109_TIFS_2017_2668219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-46c3f1996b46e22a94240c8c466047b9ebd4bc6e6bcef56a4719c04900d0e0893</originalsourceid><addsrcrecordid>eNo9kEFrwkAUhJfSQq3tDyi95A_EvrfZvOweJdQqCBW057BZX0JKTGTXWvz3NSieZhhm5vAJ8YowQQTzvlnM1hMJmE0kkZZo7sQI05RiAon3N4_Jo3gK4QdAKSQ9EotN_2f9NkQr3xytO8Urz4H9senqaFrXnmt7aPouqnof5X3b2rL35-TI0XrP7uB_d9Gau3CuP4uHyraBX646Ft-zj00-j5dfn4t8uoydpPQQK3JJhcZQqYiltEZJBU47RQQqKw2XW1U6YiodVylZlaFxoAzAFhi0ScYCL7_O9yF4roq9b3bWnwqEYmBRDCyKgUVxZXHevF02DTPf-plOwWid_AOOuluP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Mao, Yunlong ; Chen, Tingting ; Zhang, Yuan ; Wang, Tiancong ; Zhong, Sheng</creator><creatorcontrib>Mao, Yunlong ; Chen, Tingting ; Zhang, Yuan ; Wang, Tiancong ; Zhong, Sheng</creatorcontrib><description>Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a lot of security challenges. The problem of revealing secondary users' location information through sensing reports has been reported recently. Unlike any existing work, in this paper we not only address the location privacy issue in the collaborative sensing to be against semi-honest adversaries, but also take malicious adversaries into consideration. We propose efficient schemes to protect secondary users' reports from being revealed in the aggregation process at the fusion center. We rigorously prove that our privacy-preserving collaborative sensing schemes are secure against attacks from both the fusion center and secondary users. We also evaluate our schemes extensively and verify its efficiency and feasibility.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2017.2668219</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognitive radio ; Collaboration ; collaborative sensing ; Cryptography ; Location privacy ; Privacy ; privacy preserving ; Robustness ; Sensors</subject><ispartof>IEEE transactions on information forensics and security, 2017-06, Vol.12 (6), p.1483-1493</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-46c3f1996b46e22a94240c8c466047b9ebd4bc6e6bcef56a4719c04900d0e0893</citedby><cites>FETCH-LOGICAL-c265t-46c3f1996b46e22a94240c8c466047b9ebd4bc6e6bcef56a4719c04900d0e0893</cites><orcidid>0000-0001-9024-9544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7850988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7850988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mao, Yunlong</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Tiancong</creatorcontrib><creatorcontrib>Zhong, Sheng</creatorcontrib><title>Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a lot of security challenges. The problem of revealing secondary users' location information through sensing reports has been reported recently. Unlike any existing work, in this paper we not only address the location privacy issue in the collaborative sensing to be against semi-honest adversaries, but also take malicious adversaries into consideration. We propose efficient schemes to protect secondary users' reports from being revealed in the aggregation process at the fusion center. We rigorously prove that our privacy-preserving collaborative sensing schemes are secure against attacks from both the fusion center and secondary users. We also evaluate our schemes extensively and verify its efficiency and feasibility.</description><subject>Cognitive radio</subject><subject>Collaboration</subject><subject>collaborative sensing</subject><subject>Cryptography</subject><subject>Location privacy</subject><subject>Privacy</subject><subject>privacy preserving</subject><subject>Robustness</subject><subject>Sensors</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFrwkAUhJfSQq3tDyi95A_EvrfZvOweJdQqCBW057BZX0JKTGTXWvz3NSieZhhm5vAJ8YowQQTzvlnM1hMJmE0kkZZo7sQI05RiAon3N4_Jo3gK4QdAKSQ9EotN_2f9NkQr3xytO8Urz4H9senqaFrXnmt7aPouqnof5X3b2rL35-TI0XrP7uB_d9Gau3CuP4uHyraBX646Ft-zj00-j5dfn4t8uoydpPQQK3JJhcZQqYiltEZJBU47RQQqKw2XW1U6YiodVylZlaFxoAzAFhi0ScYCL7_O9yF4roq9b3bWnwqEYmBRDCyKgUVxZXHevF02DTPf-plOwWid_AOOuluP</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Mao, Yunlong</creator><creator>Chen, Tingting</creator><creator>Zhang, Yuan</creator><creator>Wang, Tiancong</creator><creator>Zhong, Sheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9024-9544</orcidid></search><sort><creationdate>201706</creationdate><title>Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing</title><author>Mao, Yunlong ; Chen, Tingting ; Zhang, Yuan ; Wang, Tiancong ; Zhong, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-46c3f1996b46e22a94240c8c466047b9ebd4bc6e6bcef56a4719c04900d0e0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cognitive radio</topic><topic>Collaboration</topic><topic>collaborative sensing</topic><topic>Cryptography</topic><topic>Location privacy</topic><topic>Privacy</topic><topic>privacy preserving</topic><topic>Robustness</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Yunlong</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Tiancong</creatorcontrib><creatorcontrib>Zhong, Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mao, Yunlong</au><au>Chen, Tingting</au><au>Zhang, Yuan</au><au>Wang, Tiancong</au><au>Zhong, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2017-06</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>1483</spage><epage>1493</epage><pages>1483-1493</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a lot of security challenges. The problem of revealing secondary users' location information through sensing reports has been reported recently. Unlike any existing work, in this paper we not only address the location privacy issue in the collaborative sensing to be against semi-honest adversaries, but also take malicious adversaries into consideration. We propose efficient schemes to protect secondary users' reports from being revealed in the aggregation process at the fusion center. We rigorously prove that our privacy-preserving collaborative sensing schemes are secure against attacks from both the fusion center and secondary users. We also evaluate our schemes extensively and verify its efficiency and feasibility.</abstract><pub>IEEE</pub><doi>10.1109/TIFS.2017.2668219</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9024-9544</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6013 |
ispartof | IEEE transactions on information forensics and security, 2017-06, Vol.12 (6), p.1483-1493 |
issn | 1556-6013 1556-6021 |
language | eng |
recordid | cdi_ieee_primary_7850988 |
source | IEEE Electronic Library (IEL) |
subjects | Cognitive radio Collaboration collaborative sensing Cryptography Location privacy Privacy privacy preserving Robustness Sensors |
title | Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Privacy-Preserving%20Aggregation%20for%20Collaborative%20Spectrum%20Sensing&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Mao,%20Yunlong&rft.date=2017-06&rft.volume=12&rft.issue=6&rft.spage=1483&rft.epage=1493&rft.pages=1483-1493&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2017.2668219&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2017_2668219%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7850988&rfr_iscdi=true |