Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing

Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2017-06, Vol.12 (6), p.1483-1493
Hauptverfasser: Mao, Yunlong, Chen, Tingting, Zhang, Yuan, Wang, Tiancong, Zhong, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1493
container_issue 6
container_start_page 1483
container_title IEEE transactions on information forensics and security
container_volume 12
creator Mao, Yunlong
Chen, Tingting
Zhang, Yuan
Wang, Tiancong
Zhong, Sheng
description Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a lot of security challenges. The problem of revealing secondary users' location information through sensing reports has been reported recently. Unlike any existing work, in this paper we not only address the location privacy issue in the collaborative sensing to be against semi-honest adversaries, but also take malicious adversaries into consideration. We propose efficient schemes to protect secondary users' reports from being revealed in the aggregation process at the fusion center. We rigorously prove that our privacy-preserving collaborative sensing schemes are secure against attacks from both the fusion center and secondary users. We also evaluate our schemes extensively and verify its efficiency and feasibility.
doi_str_mv 10.1109/TIFS.2017.2668219
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7850988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7850988</ieee_id><sourcerecordid>10_1109_TIFS_2017_2668219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-46c3f1996b46e22a94240c8c466047b9ebd4bc6e6bcef56a4719c04900d0e0893</originalsourceid><addsrcrecordid>eNo9kEFrwkAUhJfSQq3tDyi95A_EvrfZvOweJdQqCBW057BZX0JKTGTXWvz3NSieZhhm5vAJ8YowQQTzvlnM1hMJmE0kkZZo7sQI05RiAon3N4_Jo3gK4QdAKSQ9EotN_2f9NkQr3xytO8Urz4H9senqaFrXnmt7aPouqnof5X3b2rL35-TI0XrP7uB_d9Gau3CuP4uHyraBX646Ft-zj00-j5dfn4t8uoydpPQQK3JJhcZQqYiltEZJBU47RQQqKw2XW1U6YiodVylZlaFxoAzAFhi0ScYCL7_O9yF4roq9b3bWnwqEYmBRDCyKgUVxZXHevF02DTPf-plOwWid_AOOuluP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Mao, Yunlong ; Chen, Tingting ; Zhang, Yuan ; Wang, Tiancong ; Zhong, Sheng</creator><creatorcontrib>Mao, Yunlong ; Chen, Tingting ; Zhang, Yuan ; Wang, Tiancong ; Zhong, Sheng</creatorcontrib><description>Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a lot of security challenges. The problem of revealing secondary users' location information through sensing reports has been reported recently. Unlike any existing work, in this paper we not only address the location privacy issue in the collaborative sensing to be against semi-honest adversaries, but also take malicious adversaries into consideration. We propose efficient schemes to protect secondary users' reports from being revealed in the aggregation process at the fusion center. We rigorously prove that our privacy-preserving collaborative sensing schemes are secure against attacks from both the fusion center and secondary users. We also evaluate our schemes extensively and verify its efficiency and feasibility.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2017.2668219</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognitive radio ; Collaboration ; collaborative sensing ; Cryptography ; Location privacy ; Privacy ; privacy preserving ; Robustness ; Sensors</subject><ispartof>IEEE transactions on information forensics and security, 2017-06, Vol.12 (6), p.1483-1493</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-46c3f1996b46e22a94240c8c466047b9ebd4bc6e6bcef56a4719c04900d0e0893</citedby><cites>FETCH-LOGICAL-c265t-46c3f1996b46e22a94240c8c466047b9ebd4bc6e6bcef56a4719c04900d0e0893</cites><orcidid>0000-0001-9024-9544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7850988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7850988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mao, Yunlong</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Tiancong</creatorcontrib><creatorcontrib>Zhong, Sheng</creatorcontrib><title>Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a lot of security challenges. The problem of revealing secondary users' location information through sensing reports has been reported recently. Unlike any existing work, in this paper we not only address the location privacy issue in the collaborative sensing to be against semi-honest adversaries, but also take malicious adversaries into consideration. We propose efficient schemes to protect secondary users' reports from being revealed in the aggregation process at the fusion center. We rigorously prove that our privacy-preserving collaborative sensing schemes are secure against attacks from both the fusion center and secondary users. We also evaluate our schemes extensively and verify its efficiency and feasibility.</description><subject>Cognitive radio</subject><subject>Collaboration</subject><subject>collaborative sensing</subject><subject>Cryptography</subject><subject>Location privacy</subject><subject>Privacy</subject><subject>privacy preserving</subject><subject>Robustness</subject><subject>Sensors</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFrwkAUhJfSQq3tDyi95A_EvrfZvOweJdQqCBW057BZX0JKTGTXWvz3NSieZhhm5vAJ8YowQQTzvlnM1hMJmE0kkZZo7sQI05RiAon3N4_Jo3gK4QdAKSQ9EotN_2f9NkQr3xytO8Urz4H9senqaFrXnmt7aPouqnof5X3b2rL35-TI0XrP7uB_d9Gau3CuP4uHyraBX646Ft-zj00-j5dfn4t8uoydpPQQK3JJhcZQqYiltEZJBU47RQQqKw2XW1U6YiodVylZlaFxoAzAFhi0ScYCL7_O9yF4roq9b3bWnwqEYmBRDCyKgUVxZXHevF02DTPf-plOwWid_AOOuluP</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Mao, Yunlong</creator><creator>Chen, Tingting</creator><creator>Zhang, Yuan</creator><creator>Wang, Tiancong</creator><creator>Zhong, Sheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9024-9544</orcidid></search><sort><creationdate>201706</creationdate><title>Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing</title><author>Mao, Yunlong ; Chen, Tingting ; Zhang, Yuan ; Wang, Tiancong ; Zhong, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-46c3f1996b46e22a94240c8c466047b9ebd4bc6e6bcef56a4719c04900d0e0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cognitive radio</topic><topic>Collaboration</topic><topic>collaborative sensing</topic><topic>Cryptography</topic><topic>Location privacy</topic><topic>Privacy</topic><topic>privacy preserving</topic><topic>Robustness</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Yunlong</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Tiancong</creatorcontrib><creatorcontrib>Zhong, Sheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mao, Yunlong</au><au>Chen, Tingting</au><au>Zhang, Yuan</au><au>Wang, Tiancong</au><au>Zhong, Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2017-06</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>1483</spage><epage>1493</epage><pages>1483-1493</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Collaborative spectrum sensing has become increasingly popular in cognitive radio networks to enable unlicensed secondary users to coexist with the licensed primary users and share spectrum without interference. Despite its promise in performance enhancement, collaborative sensing is still facing a lot of security challenges. The problem of revealing secondary users' location information through sensing reports has been reported recently. Unlike any existing work, in this paper we not only address the location privacy issue in the collaborative sensing to be against semi-honest adversaries, but also take malicious adversaries into consideration. We propose efficient schemes to protect secondary users' reports from being revealed in the aggregation process at the fusion center. We rigorously prove that our privacy-preserving collaborative sensing schemes are secure against attacks from both the fusion center and secondary users. We also evaluate our schemes extensively and verify its efficiency and feasibility.</abstract><pub>IEEE</pub><doi>10.1109/TIFS.2017.2668219</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9024-9544</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2017-06, Vol.12 (6), p.1483-1493
issn 1556-6013
1556-6021
language eng
recordid cdi_ieee_primary_7850988
source IEEE Electronic Library (IEL)
subjects Cognitive radio
Collaboration
collaborative sensing
Cryptography
Location privacy
Privacy
privacy preserving
Robustness
Sensors
title Towards Privacy-Preserving Aggregation for Collaborative Spectrum Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Privacy-Preserving%20Aggregation%20for%20Collaborative%20Spectrum%20Sensing&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Mao,%20Yunlong&rft.date=2017-06&rft.volume=12&rft.issue=6&rft.spage=1483&rft.epage=1493&rft.pages=1483-1493&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2017.2668219&rft_dat=%3Ccrossref_RIE%3E10_1109_TIFS_2017_2668219%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7850988&rfr_iscdi=true