MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters

A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2017-06, Vol.53 (6), p.1-4
Hauptverfasser: Codecasa, Lorenzo, Di Rienzo, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 6
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 53
creator Codecasa, Lorenzo
Di Rienzo, Luca
description A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.
doi_str_mv 10.1109/TMAG.2017.2666845
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7849122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7849122</ieee_id><sourcerecordid>1904835747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ceddf8563f092e00a0210d3cfda145e99ace07567972083dafb09a08fdd314193</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYj-AcZLE8-L093uR49IEE0gKIF43Iz9CEXoYlsO_PeWYDxNXvLem5kfIfcMBoyBeFrOhpNBDqwe5FVVNby8ID0mOMsAKnFJegCsyQSv-DW5CWGTJC8Z9IibzRfZMwat6HC_9x3KNY0dXTmpfUTr4pF-HNBFa6zEaDtHraPjrZbRd9_W6WhloJ82rumo815vMaamBTrV7egsCW9xS9_R404nEW7JlcFt0Hd_s09WL-Pl6DWbzidvo-E0k7koYia1UqYpq8KAyDUAQs5AFdIoTHdrIVBqqMuqFnUOTaHQfIFAaIxSBeNMFH3yeO5NL_0cdIjtpjt4l1a2TABvirLmdXKxs0v6LgSvTbv3dof-2DJoT1jbE9b2hLX9w5oyD-eM1Vr_--uGC5bnxS-gCnTX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904835747</pqid></control><display><type>article</type><title>MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters</title><source>IEEE Electronic Library (IEL)</source><creator>Codecasa, Lorenzo ; Di Rienzo, Luca</creator><creatorcontrib>Codecasa, Lorenzo ; Di Rienzo, Luca</creatorcontrib><description>A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2666845</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Approximation algorithms ; Computer simulation ; Correlated random variables ; Correlation ; Electrokinetics ; electrokinetics problem ; Estimation ; Magnetism ; Mathematical models ; Monte Carlo methods ; Monte Carlo simulation ; Parameter uncertainty ; parametric model-order reduction (PMOR) ; Parametric statistics ; Probability density function ; Random variables ; Reduced order models ; Reduced order systems ; Spectra ; spectral approximation ; Statistics ; Uncertainty ; uncertainty quantification</subject><ispartof>IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ceddf8563f092e00a0210d3cfda145e99ace07567972083dafb09a08fdd314193</citedby><cites>FETCH-LOGICAL-c293t-ceddf8563f092e00a0210d3cfda145e99ace07567972083dafb09a08fdd314193</cites><orcidid>0000-0002-8718-1777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7849122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7849122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Codecasa, Lorenzo</creatorcontrib><creatorcontrib>Di Rienzo, Luca</creatorcontrib><title>MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.</description><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Computer simulation</subject><subject>Correlated random variables</subject><subject>Correlation</subject><subject>Electrokinetics</subject><subject>electrokinetics problem</subject><subject>Estimation</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Parameter uncertainty</subject><subject>parametric model-order reduction (PMOR)</subject><subject>Parametric statistics</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Reduced order models</subject><subject>Reduced order systems</subject><subject>Spectra</subject><subject>spectral approximation</subject><subject>Statistics</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxRujiYj-AcZLE8-L093uR49IEE0gKIF43Iz9CEXoYlsO_PeWYDxNXvLem5kfIfcMBoyBeFrOhpNBDqwe5FVVNby8ID0mOMsAKnFJegCsyQSv-DW5CWGTJC8Z9IibzRfZMwat6HC_9x3KNY0dXTmpfUTr4pF-HNBFa6zEaDtHraPjrZbRd9_W6WhloJ82rumo815vMaamBTrV7egsCW9xS9_R404nEW7JlcFt0Hd_s09WL-Pl6DWbzidvo-E0k7koYia1UqYpq8KAyDUAQs5AFdIoTHdrIVBqqMuqFnUOTaHQfIFAaIxSBeNMFH3yeO5NL_0cdIjtpjt4l1a2TABvirLmdXKxs0v6LgSvTbv3dof-2DJoT1jbE9b2hLX9w5oyD-eM1Vr_--uGC5bnxS-gCnTX</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Codecasa, Lorenzo</creator><creator>Di Rienzo, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8718-1777</orcidid></search><sort><creationdate>20170601</creationdate><title>MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters</title><author>Codecasa, Lorenzo ; Di Rienzo, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ceddf8563f092e00a0210d3cfda145e99ace07567972083dafb09a08fdd314193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Computer simulation</topic><topic>Correlated random variables</topic><topic>Correlation</topic><topic>Electrokinetics</topic><topic>electrokinetics problem</topic><topic>Estimation</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Parameter uncertainty</topic><topic>parametric model-order reduction (PMOR)</topic><topic>Parametric statistics</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Reduced order models</topic><topic>Reduced order systems</topic><topic>Spectra</topic><topic>spectral approximation</topic><topic>Statistics</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>online_resources</toplevel><creatorcontrib>Codecasa, Lorenzo</creatorcontrib><creatorcontrib>Di Rienzo, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Codecasa, Lorenzo</au><au>Di Rienzo, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>53</volume><issue>6</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2666845</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8718-1777</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_7849122
source IEEE Electronic Library (IEL)
subjects Approximation
Approximation algorithms
Computer simulation
Correlated random variables
Correlation
Electrokinetics
electrokinetics problem
Estimation
Magnetism
Mathematical models
Monte Carlo methods
Monte Carlo simulation
Parameter uncertainty
parametric model-order reduction (PMOR)
Parametric statistics
Probability density function
Random variables
Reduced order models
Reduced order systems
Spectra
spectral approximation
Statistics
Uncertainty
uncertainty quantification
title MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOR-Based%20Approach%20to%20Uncertainty%20Quantification%20in%20Electrokinetics%20With%20Correlated%20Random%20Material%20Parameters&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Codecasa,%20Lorenzo&rft.date=2017-06-01&rft.volume=53&rft.issue=6&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2666845&rft_dat=%3Cproquest_RIE%3E1904835747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904835747&rft_id=info:pmid/&rft_ieee_id=7849122&rfr_iscdi=true