MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters
A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently esti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on magnetics 2017-06, Vol.53 (6), p.1-4 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on magnetics |
container_volume | 53 |
creator | Codecasa, Lorenzo Di Rienzo, Luca |
description | A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis. |
doi_str_mv | 10.1109/TMAG.2017.2666845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7849122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7849122</ieee_id><sourcerecordid>1904835747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ceddf8563f092e00a0210d3cfda145e99ace07567972083dafb09a08fdd314193</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYj-AcZLE8-L093uR49IEE0gKIF43Iz9CEXoYlsO_PeWYDxNXvLem5kfIfcMBoyBeFrOhpNBDqwe5FVVNby8ID0mOMsAKnFJegCsyQSv-DW5CWGTJC8Z9IibzRfZMwat6HC_9x3KNY0dXTmpfUTr4pF-HNBFa6zEaDtHraPjrZbRd9_W6WhloJ82rumo815vMaamBTrV7egsCW9xS9_R404nEW7JlcFt0Hd_s09WL-Pl6DWbzidvo-E0k7koYia1UqYpq8KAyDUAQs5AFdIoTHdrIVBqqMuqFnUOTaHQfIFAaIxSBeNMFH3yeO5NL_0cdIjtpjt4l1a2TABvirLmdXKxs0v6LgSvTbv3dof-2DJoT1jbE9b2hLX9w5oyD-eM1Vr_--uGC5bnxS-gCnTX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1904835747</pqid></control><display><type>article</type><title>MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters</title><source>IEEE Electronic Library (IEL)</source><creator>Codecasa, Lorenzo ; Di Rienzo, Luca</creator><creatorcontrib>Codecasa, Lorenzo ; Di Rienzo, Luca</creatorcontrib><description>A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2017.2666845</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Approximation algorithms ; Computer simulation ; Correlated random variables ; Correlation ; Electrokinetics ; electrokinetics problem ; Estimation ; Magnetism ; Mathematical models ; Monte Carlo methods ; Monte Carlo simulation ; Parameter uncertainty ; parametric model-order reduction (PMOR) ; Parametric statistics ; Probability density function ; Random variables ; Reduced order models ; Reduced order systems ; Spectra ; spectral approximation ; Statistics ; Uncertainty ; uncertainty quantification</subject><ispartof>IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ceddf8563f092e00a0210d3cfda145e99ace07567972083dafb09a08fdd314193</citedby><cites>FETCH-LOGICAL-c293t-ceddf8563f092e00a0210d3cfda145e99ace07567972083dafb09a08fdd314193</cites><orcidid>0000-0002-8718-1777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7849122$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7849122$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Codecasa, Lorenzo</creatorcontrib><creatorcontrib>Di Rienzo, Luca</creatorcontrib><title>MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.</description><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Computer simulation</subject><subject>Correlated random variables</subject><subject>Correlation</subject><subject>Electrokinetics</subject><subject>electrokinetics problem</subject><subject>Estimation</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Parameter uncertainty</subject><subject>parametric model-order reduction (PMOR)</subject><subject>Parametric statistics</subject><subject>Probability density function</subject><subject>Random variables</subject><subject>Reduced order models</subject><subject>Reduced order systems</subject><subject>Spectra</subject><subject>spectral approximation</subject><subject>Statistics</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxRujiYj-AcZLE8-L093uR49IEE0gKIF43Iz9CEXoYlsO_PeWYDxNXvLem5kfIfcMBoyBeFrOhpNBDqwe5FVVNby8ID0mOMsAKnFJegCsyQSv-DW5CWGTJC8Z9IibzRfZMwat6HC_9x3KNY0dXTmpfUTr4pF-HNBFa6zEaDtHraPjrZbRd9_W6WhloJ82rumo815vMaamBTrV7egsCW9xS9_R404nEW7JlcFt0Hd_s09WL-Pl6DWbzidvo-E0k7koYia1UqYpq8KAyDUAQs5AFdIoTHdrIVBqqMuqFnUOTaHQfIFAaIxSBeNMFH3yeO5NL_0cdIjtpjt4l1a2TABvirLmdXKxs0v6LgSvTbv3dof-2DJoT1jbE9b2hLX9w5oyD-eM1Vr_--uGC5bnxS-gCnTX</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Codecasa, Lorenzo</creator><creator>Di Rienzo, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8718-1777</orcidid></search><sort><creationdate>20170601</creationdate><title>MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters</title><author>Codecasa, Lorenzo ; Di Rienzo, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ceddf8563f092e00a0210d3cfda145e99ace07567972083dafb09a08fdd314193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Computer simulation</topic><topic>Correlated random variables</topic><topic>Correlation</topic><topic>Electrokinetics</topic><topic>electrokinetics problem</topic><topic>Estimation</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Parameter uncertainty</topic><topic>parametric model-order reduction (PMOR)</topic><topic>Parametric statistics</topic><topic>Probability density function</topic><topic>Random variables</topic><topic>Reduced order models</topic><topic>Reduced order systems</topic><topic>Spectra</topic><topic>spectral approximation</topic><topic>Statistics</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>online_resources</toplevel><creatorcontrib>Codecasa, Lorenzo</creatorcontrib><creatorcontrib>Di Rienzo, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Codecasa, Lorenzo</au><au>Di Rienzo, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>53</volume><issue>6</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>A strategy for uncertainty quantification in electrokinetic problems with correlated random material parameters is proposed. Such approach exploits a reduced-order model and a polynomial spectral approximation of the deterministic parametric electrokinetic problem for accurately and efficiently estimating the statistics of the quantities of interest by Monte Carlo analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2017.2666845</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8718-1777</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9464 |
ispartof | IEEE transactions on magnetics, 2017-06, Vol.53 (6), p.1-4 |
issn | 0018-9464 1941-0069 |
language | eng |
recordid | cdi_ieee_primary_7849122 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Approximation algorithms Computer simulation Correlated random variables Correlation Electrokinetics electrokinetics problem Estimation Magnetism Mathematical models Monte Carlo methods Monte Carlo simulation Parameter uncertainty parametric model-order reduction (PMOR) Parametric statistics Probability density function Random variables Reduced order models Reduced order systems Spectra spectral approximation Statistics Uncertainty uncertainty quantification |
title | MOR-Based Approach to Uncertainty Quantification in Electrokinetics With Correlated Random Material Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOR-Based%20Approach%20to%20Uncertainty%20Quantification%20in%20Electrokinetics%20With%20Correlated%20Random%20Material%20Parameters&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Codecasa,%20Lorenzo&rft.date=2017-06-01&rft.volume=53&rft.issue=6&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2017.2666845&rft_dat=%3Cproquest_RIE%3E1904835747%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1904835747&rft_id=info:pmid/&rft_ieee_id=7849122&rfr_iscdi=true |