Evolution of logic programs: part-of-speech tagging

An algorithm is presented for learning concept classification rules. It is a hybrid between evolutionary computing and inductive logic programming (ILP). Given input of positive and negative examples, the algorithm constructs a logic program to classify these examples. The algorithm has several attr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Reiser, P.G.K., Riddle, P.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1345 Vol. 2
container_issue
container_start_page 1338
container_title
container_volume 2
creator Reiser, P.G.K.
Riddle, P.J.
description An algorithm is presented for learning concept classification rules. It is a hybrid between evolutionary computing and inductive logic programming (ILP). Given input of positive and negative examples, the algorithm constructs a logic program to classify these examples. The algorithm has several attractive features, including the ability to use explicit background (user-supplied) knowledge and to produce comprehensible output. We present results of using the algorithm to a natural language processing problem, part-of-speech tagging. The results indicate that using an evolutionary algorithm to direct a population of ILP learners can increase accuracy. This result is further improved when crossover is used to exchange rules at intermediate stages in learning. The improvement over Progol, a greedy ILP algorithm, is statistically significant (P
doi_str_mv 10.1109/CEC.1999.782604
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_782604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>782604</ieee_id><sourcerecordid>782604</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-aee8457ef352c50fd533e46bb6b33fccca3744e12af61a56931f81216d5519ed3</originalsourceid><addsrcrecordid>eNotj01LxDAUAAMiqOueBU_9A615eUmaeJNSP2DBy96XNH2Jke6mpFXw3yusc5nbwDB2B7wB4Pah67sGrLVNa4Tm8oLd8NZwVAq1vWLbZfnkf6CVLYprhv13nr7WlE9VDtWUY_LVXHIs7rg8VrMra51DvcxE_qNaXYzpFG_ZZXDTQtt_b9j-ud93r_Xu_eWte9rVydi1dkRGqpYCKuEVD6NCJKmHQQ-IwXvvsJWSQLigwSltEYIBAXpUCiyNuGH352wiosNc0tGVn8P5Cn8BzbNB_A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolution of logic programs: part-of-speech tagging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Reiser, P.G.K. ; Riddle, P.J.</creator><creatorcontrib>Reiser, P.G.K. ; Riddle, P.J.</creatorcontrib><description>An algorithm is presented for learning concept classification rules. It is a hybrid between evolutionary computing and inductive logic programming (ILP). Given input of positive and negative examples, the algorithm constructs a logic program to classify these examples. The algorithm has several attractive features, including the ability to use explicit background (user-supplied) knowledge and to produce comprehensible output. We present results of using the algorithm to a natural language processing problem, part-of-speech tagging. The results indicate that using an evolutionary algorithm to direct a population of ILP learners can increase accuracy. This result is further improved when crossover is used to exchange rules at intermediate stages in learning. The improvement over Progol, a greedy ILP algorithm, is statistically significant (P&lt;0.005).</description><identifier>ISBN: 0780355369</identifier><identifier>ISBN: 9780780355361</identifier><identifier>DOI: 10.1109/CEC.1999.782604</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer science ; Evolutionary computation ; Genetic algorithms ; Logic programming ; Natural language processing ; Robustness ; Search methods ; Tagging</subject><ispartof>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, Vol.2, p.1338-1345 Vol. 2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/782604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,782,786,791,792,2062,4054,4055,27934,54929</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/782604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reiser, P.G.K.</creatorcontrib><creatorcontrib>Riddle, P.J.</creatorcontrib><title>Evolution of logic programs: part-of-speech tagging</title><title>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)</title><addtitle>CEC</addtitle><description>An algorithm is presented for learning concept classification rules. It is a hybrid between evolutionary computing and inductive logic programming (ILP). Given input of positive and negative examples, the algorithm constructs a logic program to classify these examples. The algorithm has several attractive features, including the ability to use explicit background (user-supplied) knowledge and to produce comprehensible output. We present results of using the algorithm to a natural language processing problem, part-of-speech tagging. The results indicate that using an evolutionary algorithm to direct a population of ILP learners can increase accuracy. This result is further improved when crossover is used to exchange rules at intermediate stages in learning. The improvement over Progol, a greedy ILP algorithm, is statistically significant (P&lt;0.005).</description><subject>Computer science</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Logic programming</subject><subject>Natural language processing</subject><subject>Robustness</subject><subject>Search methods</subject><subject>Tagging</subject><isbn>0780355369</isbn><isbn>9780780355361</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj01LxDAUAAMiqOueBU_9A615eUmaeJNSP2DBy96XNH2Jke6mpFXw3yusc5nbwDB2B7wB4Pah67sGrLVNa4Tm8oLd8NZwVAq1vWLbZfnkf6CVLYprhv13nr7WlE9VDtWUY_LVXHIs7rg8VrMra51DvcxE_qNaXYzpFG_ZZXDTQtt_b9j-ud93r_Xu_eWte9rVydi1dkRGqpYCKuEVD6NCJKmHQQ-IwXvvsJWSQLigwSltEYIBAXpUCiyNuGH352wiosNc0tGVn8P5Cn8BzbNB_A</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Reiser, P.G.K.</creator><creator>Riddle, P.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1999</creationdate><title>Evolution of logic programs: part-of-speech tagging</title><author>Reiser, P.G.K. ; Riddle, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-aee8457ef352c50fd533e46bb6b33fccca3744e12af61a56931f81216d5519ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Computer science</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Logic programming</topic><topic>Natural language processing</topic><topic>Robustness</topic><topic>Search methods</topic><topic>Tagging</topic><toplevel>online_resources</toplevel><creatorcontrib>Reiser, P.G.K.</creatorcontrib><creatorcontrib>Riddle, P.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reiser, P.G.K.</au><au>Riddle, P.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolution of logic programs: part-of-speech tagging</atitle><btitle>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)</btitle><stitle>CEC</stitle><date>1999</date><risdate>1999</risdate><volume>2</volume><spage>1338</spage><epage>1345 Vol. 2</epage><pages>1338-1345 Vol. 2</pages><isbn>0780355369</isbn><isbn>9780780355361</isbn><abstract>An algorithm is presented for learning concept classification rules. It is a hybrid between evolutionary computing and inductive logic programming (ILP). Given input of positive and negative examples, the algorithm constructs a logic program to classify these examples. The algorithm has several attractive features, including the ability to use explicit background (user-supplied) knowledge and to produce comprehensible output. We present results of using the algorithm to a natural language processing problem, part-of-speech tagging. The results indicate that using an evolutionary algorithm to direct a population of ILP learners can increase accuracy. This result is further improved when crossover is used to exchange rules at intermediate stages in learning. The improvement over Progol, a greedy ILP algorithm, is statistically significant (P&lt;0.005).</abstract><pub>IEEE</pub><doi>10.1109/CEC.1999.782604</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780355369
ispartof Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, Vol.2, p.1338-1345 Vol. 2
issn
language eng
recordid cdi_ieee_primary_782604
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer science
Evolutionary computation
Genetic algorithms
Logic programming
Natural language processing
Robustness
Search methods
Tagging
title Evolution of logic programs: part-of-speech tagging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A49%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolution%20of%20logic%20programs:%20part-of-speech%20tagging&rft.btitle=Proceedings%20of%20the%201999%20Congress%20on%20Evolutionary%20Computation-CEC99%20(Cat.%20No.%2099TH8406)&rft.au=Reiser,%20P.G.K.&rft.date=1999&rft.volume=2&rft.spage=1338&rft.epage=1345%20Vol.%202&rft.pages=1338-1345%20Vol.%202&rft.isbn=0780355369&rft.isbn_list=9780780355361&rft_id=info:doi/10.1109/CEC.1999.782604&rft_dat=%3Cieee_6IE%3E782604%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=782604&rfr_iscdi=true