Global natural /spl theta/-tracking control of Lagrangian systems

The Lagrange differential equation is used in its general vector form without any information either about system parameters and nonlinearities or about external disturbances so that their real forms and values are allowed to be completely unknown. A demanded system global tracking quality is define...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gruyitch, L.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3000 vol.5
container_issue
container_start_page 2996
container_title
container_volume 5
creator Gruyitch, L.T.
description The Lagrange differential equation is used in its general vector form without any information either about system parameters and nonlinearities or about external disturbances so that their real forms and values are allowed to be completely unknown. A demanded system global tracking quality is defined by a vector differential equation in terms of the error vector of the general coordinate vector /spl theta/. In order for a tracking control to exist for such a system and under such a lack of information, the system should obey a qualitative dynamical property, called the global natural /spl theta/-trackability. The necessary and sufficient conditions for global natural /spl theta/-trackability are presented. They compose a part of the whole set of the necessary and sufficient conditions for a control to be global natural /spl theta/-tracking control of the system, which guarantees the requested tracking quality. The paper results are based on new issues in the framework of the Lagrangian systems such as the physical continuity and uniqueness principle.
doi_str_mv 10.1109/ACC.1999.782310
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_782310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>782310</ieee_id><sourcerecordid>782310</sourcerecordid><originalsourceid>FETCH-ieee_primary_7823103</originalsourceid><addsrcrecordid>eNp9jrsOgjAUQG98JOJjNnHqDwC3VIGOhPgYHN3N1VRESyFtHfh7TXT2LGc4ywFYcow4RxkXZRlxKWWU5YngOIAgEVkebvKUD2GKWY5iLSWKEQSYrUXIUy4nsHDugR82mMoEAyj2ur2QZob8y34cu04zf1ee4tBbuj5rU7Fra7xtNWtv7EiVJVPVZJjrnVeNm8P4Rtqpxc8zWO22p_IQ1kqpc2frhmx__k6Kv_ENIFo7zQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Global natural /spl theta/-tracking control of Lagrangian systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gruyitch, L.T.</creator><creatorcontrib>Gruyitch, L.T.</creatorcontrib><description>The Lagrange differential equation is used in its general vector form without any information either about system parameters and nonlinearities or about external disturbances so that their real forms and values are allowed to be completely unknown. A demanded system global tracking quality is defined by a vector differential equation in terms of the error vector of the general coordinate vector /spl theta/. In order for a tracking control to exist for such a system and under such a lack of information, the system should obey a qualitative dynamical property, called the global natural /spl theta/-trackability. The necessary and sufficient conditions for global natural /spl theta/-trackability are presented. They compose a part of the whole set of the necessary and sufficient conditions for a control to be global natural /spl theta/-tracking control of the system, which guarantees the requested tracking quality. The paper results are based on new issues in the framework of the Lagrangian systems such as the physical continuity and uniqueness principle.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 0780349903</identifier><identifier>ISBN: 9780780349902</identifier><identifier>EISSN: 2378-5861</identifier><identifier>DOI: 10.1109/ACC.1999.782310</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control nonlinearities ; Control systems ; Differential equations ; Lagrangian functions ; Mechanical systems ; Nonlinear control systems ; Robust control ; Space vehicles ; Stability ; Sufficient conditions</subject><ispartof>Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), 1999, Vol.5, p.2996-3000 vol.5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/782310$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/782310$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gruyitch, L.T.</creatorcontrib><title>Global natural /spl theta/-tracking control of Lagrangian systems</title><title>Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)</title><addtitle>ACC</addtitle><description>The Lagrange differential equation is used in its general vector form without any information either about system parameters and nonlinearities or about external disturbances so that their real forms and values are allowed to be completely unknown. A demanded system global tracking quality is defined by a vector differential equation in terms of the error vector of the general coordinate vector /spl theta/. In order for a tracking control to exist for such a system and under such a lack of information, the system should obey a qualitative dynamical property, called the global natural /spl theta/-trackability. The necessary and sufficient conditions for global natural /spl theta/-trackability are presented. They compose a part of the whole set of the necessary and sufficient conditions for a control to be global natural /spl theta/-tracking control of the system, which guarantees the requested tracking quality. The paper results are based on new issues in the framework of the Lagrangian systems such as the physical continuity and uniqueness principle.</description><subject>Control nonlinearities</subject><subject>Control systems</subject><subject>Differential equations</subject><subject>Lagrangian functions</subject><subject>Mechanical systems</subject><subject>Nonlinear control systems</subject><subject>Robust control</subject><subject>Space vehicles</subject><subject>Stability</subject><subject>Sufficient conditions</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>0780349903</isbn><isbn>9780780349902</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jrsOgjAUQG98JOJjNnHqDwC3VIGOhPgYHN3N1VRESyFtHfh7TXT2LGc4ywFYcow4RxkXZRlxKWWU5YngOIAgEVkebvKUD2GKWY5iLSWKEQSYrUXIUy4nsHDugR82mMoEAyj2ur2QZob8y34cu04zf1ee4tBbuj5rU7Fra7xtNWtv7EiVJVPVZJjrnVeNm8P4Rtqpxc8zWO22p_IQ1kqpc2frhmx__k6Kv_ENIFo7zQ</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Gruyitch, L.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Global natural /spl theta/-tracking control of Lagrangian systems</title><author>Gruyitch, L.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_7823103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Control nonlinearities</topic><topic>Control systems</topic><topic>Differential equations</topic><topic>Lagrangian functions</topic><topic>Mechanical systems</topic><topic>Nonlinear control systems</topic><topic>Robust control</topic><topic>Space vehicles</topic><topic>Stability</topic><topic>Sufficient conditions</topic><toplevel>online_resources</toplevel><creatorcontrib>Gruyitch, L.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gruyitch, L.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Global natural /spl theta/-tracking control of Lagrangian systems</atitle><btitle>Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251)</btitle><stitle>ACC</stitle><date>1999</date><risdate>1999</risdate><volume>5</volume><spage>2996</spage><epage>3000 vol.5</epage><pages>2996-3000 vol.5</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>0780349903</isbn><isbn>9780780349902</isbn><abstract>The Lagrange differential equation is used in its general vector form without any information either about system parameters and nonlinearities or about external disturbances so that their real forms and values are allowed to be completely unknown. A demanded system global tracking quality is defined by a vector differential equation in terms of the error vector of the general coordinate vector /spl theta/. In order for a tracking control to exist for such a system and under such a lack of information, the system should obey a qualitative dynamical property, called the global natural /spl theta/-trackability. The necessary and sufficient conditions for global natural /spl theta/-trackability are presented. They compose a part of the whole set of the necessary and sufficient conditions for a control to be global natural /spl theta/-tracking control of the system, which guarantees the requested tracking quality. The paper results are based on new issues in the framework of the Lagrangian systems such as the physical continuity and uniqueness principle.</abstract><pub>IEEE</pub><doi>10.1109/ACC.1999.782310</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), 1999, Vol.5, p.2996-3000 vol.5
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_782310
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control nonlinearities
Control systems
Differential equations
Lagrangian functions
Mechanical systems
Nonlinear control systems
Robust control
Space vehicles
Stability
Sufficient conditions
title Global natural /spl theta/-tracking control of Lagrangian systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Global%20natural%20/spl%20theta/-tracking%20control%20of%20Lagrangian%20systems&rft.btitle=Proceedings%20of%20the%201999%20American%20Control%20Conference%20(Cat.%20No.%2099CH36251)&rft.au=Gruyitch,%20L.T.&rft.date=1999&rft.volume=5&rft.spage=2996&rft.epage=3000%20vol.5&rft.pages=2996-3000%20vol.5&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=0780349903&rft.isbn_list=9780780349902&rft_id=info:doi/10.1109/ACC.1999.782310&rft_dat=%3Cieee_6IE%3E782310%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=782310&rfr_iscdi=true