Residual Networks of Residual Networks: Multilevel Residual Networks
A residual networks family with hundreds or even thousands of layers dominates major image recognition tasks, but building a network by simply stacking residual blocks inevitably limits its optimization ability. This paper proposes a novel residual network architecture, residual networks of residual...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2018-06, Vol.28 (6), p.1303-1314 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1314 |
---|---|
container_issue | 6 |
container_start_page | 1303 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 28 |
creator | Zhang, Ke Sun, Miao Han, Tony X. Yuan, Xingfang Guo, Liru Liu, Tao |
description | A residual networks family with hundreds or even thousands of layers dominates major image recognition tasks, but building a network by simply stacking residual blocks inevitably limits its optimization ability. This paper proposes a novel residual network architecture, residual networks of residual networks (RoR), to dig the optimization ability of residual networks. RoR substitutes optimizing residual mapping of residual mapping for optimizing original residual mapping. In particular, RoR adds levelwise shortcut connections upon original residual networks to promote the learning capability of residual networks. More importantly, RoR can be applied to various kinds of residual networks (ResNets, Pre-ResNets, and WRN) and significantly boost their performance. Our experiments demonstrate the effectiveness and versatility of RoR, where it achieves the best performance in all residual-network-like structures. Our RoR-3-WRN58-4 + SD models achieve new state-of-the-art results on CIFAR-10, CIFAR-100, and SVHN, with the test errors of 3.77%, 19.73%, and 1.59%, respectively. RoR-3 models also achieve state-of-the-art results compared with ResNets on the ImageNet data set. |
doi_str_mv | 10.1109/TCSVT.2017.2654543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7820046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7820046</ieee_id><sourcerecordid>2174538271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-149f72d5f3dbf71f6559021f1a18e2d4a6e37cdc849abb9de7897e35aadd7b503</originalsourceid><addsrcrecordid>eNplkE1LxDAQhoMouK7-Ab0UPHfN5KNJvcn6CauCVq8hbSbQtdo1aRX_vV27eNnTDDPvMwMPIcdAZwA0Pyvmz6_FjFFQM5ZJIQXfIROQUqeMUbk79FRCqhnIfXIQ45JSEFqoCbl8wli73jbJA3bfbXiLSeuTreF5ct83Xd3gFzbb20Oy520T8WhTp-Tl-qqY36aLx5u7-cUirbjWXQoi94o56bkrvQKfSZlTBh4saGRO2Ay5qlylRW7LMneodK6QS2udU6WkfEpOx7ur0H72GDuzbPvwMbw0DJSQXDMFQ4qNqSq0MQb0ZhXqdxt-DFCztmX-bJm1LbOxNUAnI1Qj4j-gNKNUZPwX-xdmuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174538271</pqid></control><display><type>article</type><title>Residual Networks of Residual Networks: Multilevel Residual Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Ke ; Sun, Miao ; Han, Tony X. ; Yuan, Xingfang ; Guo, Liru ; Liu, Tao</creator><creatorcontrib>Zhang, Ke ; Sun, Miao ; Han, Tony X. ; Yuan, Xingfang ; Guo, Liru ; Liu, Tao</creatorcontrib><description>A residual networks family with hundreds or even thousands of layers dominates major image recognition tasks, but building a network by simply stacking residual blocks inevitably limits its optimization ability. This paper proposes a novel residual network architecture, residual networks of residual networks (RoR), to dig the optimization ability of residual networks. RoR substitutes optimizing residual mapping of residual mapping for optimizing original residual mapping. In particular, RoR adds levelwise shortcut connections upon original residual networks to promote the learning capability of residual networks. More importantly, RoR can be applied to various kinds of residual networks (ResNets, Pre-ResNets, and WRN) and significantly boost their performance. Our experiments demonstrate the effectiveness and versatility of RoR, where it achieves the best performance in all residual-network-like structures. Our RoR-3-WRN58-4 + SD models achieve new state-of-the-art results on CIFAR-10, CIFAR-100, and SVHN, with the test errors of 3.77%, 19.73%, and 1.59%, respectively. RoR-3 models also achieve state-of-the-art results compared with ResNets on the ImageNet data set.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2017.2654543</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Image classification ; ImageNet data set ; Mapping ; Networks ; Neural networks ; Object recognition ; Optimization ; residual networks ; residual networks of residual networks (RoR) ; Residual neural networks ; shortcut ; State of the art ; stochastic depth (SD) ; Stochastic processes ; Training</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2018-06, Vol.28 (6), p.1303-1314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-149f72d5f3dbf71f6559021f1a18e2d4a6e37cdc849abb9de7897e35aadd7b503</citedby><cites>FETCH-LOGICAL-c388t-149f72d5f3dbf71f6559021f1a18e2d4a6e37cdc849abb9de7897e35aadd7b503</cites><orcidid>0000-0002-9027-3875 ; 0000-0003-3271-3585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7820046$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7820046$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Sun, Miao</creatorcontrib><creatorcontrib>Han, Tony X.</creatorcontrib><creatorcontrib>Yuan, Xingfang</creatorcontrib><creatorcontrib>Guo, Liru</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><title>Residual Networks of Residual Networks: Multilevel Residual Networks</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>A residual networks family with hundreds or even thousands of layers dominates major image recognition tasks, but building a network by simply stacking residual blocks inevitably limits its optimization ability. This paper proposes a novel residual network architecture, residual networks of residual networks (RoR), to dig the optimization ability of residual networks. RoR substitutes optimizing residual mapping of residual mapping for optimizing original residual mapping. In particular, RoR adds levelwise shortcut connections upon original residual networks to promote the learning capability of residual networks. More importantly, RoR can be applied to various kinds of residual networks (ResNets, Pre-ResNets, and WRN) and significantly boost their performance. Our experiments demonstrate the effectiveness and versatility of RoR, where it achieves the best performance in all residual-network-like structures. Our RoR-3-WRN58-4 + SD models achieve new state-of-the-art results on CIFAR-10, CIFAR-100, and SVHN, with the test errors of 3.77%, 19.73%, and 1.59%, respectively. RoR-3 models also achieve state-of-the-art results compared with ResNets on the ImageNet data set.</description><subject>Image classification</subject><subject>ImageNet data set</subject><subject>Mapping</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>residual networks</subject><subject>residual networks of residual networks (RoR)</subject><subject>Residual neural networks</subject><subject>shortcut</subject><subject>State of the art</subject><subject>stochastic depth (SD)</subject><subject>Stochastic processes</subject><subject>Training</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNplkE1LxDAQhoMouK7-Ab0UPHfN5KNJvcn6CauCVq8hbSbQtdo1aRX_vV27eNnTDDPvMwMPIcdAZwA0Pyvmz6_FjFFQM5ZJIQXfIROQUqeMUbk79FRCqhnIfXIQ45JSEFqoCbl8wli73jbJA3bfbXiLSeuTreF5ct83Xd3gFzbb20Oy520T8WhTp-Tl-qqY36aLx5u7-cUirbjWXQoi94o56bkrvQKfSZlTBh4saGRO2Ay5qlylRW7LMneodK6QS2udU6WkfEpOx7ur0H72GDuzbPvwMbw0DJSQXDMFQ4qNqSq0MQb0ZhXqdxt-DFCztmX-bJm1LbOxNUAnI1Qj4j-gNKNUZPwX-xdmuQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Zhang, Ke</creator><creator>Sun, Miao</creator><creator>Han, Tony X.</creator><creator>Yuan, Xingfang</creator><creator>Guo, Liru</creator><creator>Liu, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9027-3875</orcidid><orcidid>https://orcid.org/0000-0003-3271-3585</orcidid></search><sort><creationdate>20180601</creationdate><title>Residual Networks of Residual Networks: Multilevel Residual Networks</title><author>Zhang, Ke ; Sun, Miao ; Han, Tony X. ; Yuan, Xingfang ; Guo, Liru ; Liu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-149f72d5f3dbf71f6559021f1a18e2d4a6e37cdc849abb9de7897e35aadd7b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Image classification</topic><topic>ImageNet data set</topic><topic>Mapping</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>residual networks</topic><topic>residual networks of residual networks (RoR)</topic><topic>Residual neural networks</topic><topic>shortcut</topic><topic>State of the art</topic><topic>stochastic depth (SD)</topic><topic>Stochastic processes</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Sun, Miao</creatorcontrib><creatorcontrib>Han, Tony X.</creatorcontrib><creatorcontrib>Yuan, Xingfang</creatorcontrib><creatorcontrib>Guo, Liru</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Ke</au><au>Sun, Miao</au><au>Han, Tony X.</au><au>Yuan, Xingfang</au><au>Guo, Liru</au><au>Liu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Residual Networks of Residual Networks: Multilevel Residual Networks</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>28</volume><issue>6</issue><spage>1303</spage><epage>1314</epage><pages>1303-1314</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>A residual networks family with hundreds or even thousands of layers dominates major image recognition tasks, but building a network by simply stacking residual blocks inevitably limits its optimization ability. This paper proposes a novel residual network architecture, residual networks of residual networks (RoR), to dig the optimization ability of residual networks. RoR substitutes optimizing residual mapping of residual mapping for optimizing original residual mapping. In particular, RoR adds levelwise shortcut connections upon original residual networks to promote the learning capability of residual networks. More importantly, RoR can be applied to various kinds of residual networks (ResNets, Pre-ResNets, and WRN) and significantly boost their performance. Our experiments demonstrate the effectiveness and versatility of RoR, where it achieves the best performance in all residual-network-like structures. Our RoR-3-WRN58-4 + SD models achieve new state-of-the-art results on CIFAR-10, CIFAR-100, and SVHN, with the test errors of 3.77%, 19.73%, and 1.59%, respectively. RoR-3 models also achieve state-of-the-art results compared with ResNets on the ImageNet data set.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2017.2654543</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9027-3875</orcidid><orcidid>https://orcid.org/0000-0003-3271-3585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2018-06, Vol.28 (6), p.1303-1314 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_7820046 |
source | IEEE Electronic Library (IEL) |
subjects | Image classification ImageNet data set Mapping Networks Neural networks Object recognition Optimization residual networks residual networks of residual networks (RoR) Residual neural networks shortcut State of the art stochastic depth (SD) Stochastic processes Training |
title | Residual Networks of Residual Networks: Multilevel Residual Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Residual%20Networks%20of%20Residual%20Networks:%20Multilevel%20Residual%20Networks&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Zhang,%20Ke&rft.date=2018-06-01&rft.volume=28&rft.issue=6&rft.spage=1303&rft.epage=1314&rft.pages=1303-1314&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2017.2654543&rft_dat=%3Cproquest_RIE%3E2174538271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174538271&rft_id=info:pmid/&rft_ieee_id=7820046&rfr_iscdi=true |