Genetic algorithm-based multi-objective optimisation and conceptual engineering design
In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 Vol. 1 |
---|---|
container_issue | |
container_start_page | 29 |
container_title | |
container_volume | 1 |
creator | Cvetkovic, D. Parmee, I.C. |
description | In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This is integrated with two multiobjective genetic algorithms: weighted sums GA and a method for combining the Pareto method with weights. Examples of preference relations application together with traditional genetic algorithms are also presented. A further method for dynamical inclusion and modification of extra constraints (not included in the mathematical model of the system) via scenarios is presented. Its use is discussed and potential applications indicated. Finally, some future work paths are mentioned. |
doi_str_mv | 10.1109/CEC.1999.781904 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_781904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>781904</ieee_id><sourcerecordid>781904</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-d280cd68c83a1c107877f269db149340b37cf57e3030e98389a57dd17575c6743</originalsourceid><addsrcrecordid>eNotj0FLwzAYhgMiqHNnwVP-QGfSr2mSo5Q5hYGX4XWkydf6jTYtTSb47x3M9_LcHp6XsScpNlIK-9Jsm4201m60kVZUN-xBaCNAKajtHVundBKXga00lPfsa4cRM3nuhn5aKH-PResSBj6eh0zF1J7QZ_pBPs2ZRkou0xS5i4H7KXqc89kNHGNPEXGh2POAifr4yG47NyRc_3PFDm_bQ_Ne7D93H83rviCjcxFKI3yojTfgpJeXTq27srahlZWFSrSgfac0ggCB1oCxTukQpFZa-VpXsGLPVy0h4nFeaHTL7_F6HP4A7YpO7g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithm-based multi-objective optimisation and conceptual engineering design</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cvetkovic, D. ; Parmee, I.C.</creator><creatorcontrib>Cvetkovic, D. ; Parmee, I.C.</creatorcontrib><description>In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This is integrated with two multiobjective genetic algorithms: weighted sums GA and a method for combining the Pareto method with weights. Examples of preference relations application together with traditional genetic algorithms are also presented. A further method for dynamical inclusion and modification of extra constraints (not included in the mathematical model of the system) via scenarios is presented. Its use is discussed and potential applications indicated. Finally, some future work paths are mentioned.</description><identifier>ISBN: 0780355369</identifier><identifier>ISBN: 9780780355361</identifier><identifier>DOI: 10.1109/CEC.1999.781904</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Constraint optimization ; Design engineering ; Design optimization ; Genetic algorithms ; Genetic engineering ; Mathematical model ; Optimization methods ; Process design ; Systems engineering and theory</subject><ispartof>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, Vol.1, p.29-36 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/781904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/781904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cvetkovic, D.</creatorcontrib><creatorcontrib>Parmee, I.C.</creatorcontrib><title>Genetic algorithm-based multi-objective optimisation and conceptual engineering design</title><title>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)</title><addtitle>CEC</addtitle><description>In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This is integrated with two multiobjective genetic algorithms: weighted sums GA and a method for combining the Pareto method with weights. Examples of preference relations application together with traditional genetic algorithms are also presented. A further method for dynamical inclusion and modification of extra constraints (not included in the mathematical model of the system) via scenarios is presented. Its use is discussed and potential applications indicated. Finally, some future work paths are mentioned.</description><subject>Algorithm design and analysis</subject><subject>Constraint optimization</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Mathematical model</subject><subject>Optimization methods</subject><subject>Process design</subject><subject>Systems engineering and theory</subject><isbn>0780355369</isbn><isbn>9780780355361</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLwzAYhgMiqHNnwVP-QGfSr2mSo5Q5hYGX4XWkydf6jTYtTSb47x3M9_LcHp6XsScpNlIK-9Jsm4201m60kVZUN-xBaCNAKajtHVundBKXga00lPfsa4cRM3nuhn5aKH-PResSBj6eh0zF1J7QZ_pBPs2ZRkou0xS5i4H7KXqc89kNHGNPEXGh2POAifr4yG47NyRc_3PFDm_bQ_Ne7D93H83rviCjcxFKI3yojTfgpJeXTq27srahlZWFSrSgfac0ggCB1oCxTukQpFZa-VpXsGLPVy0h4nFeaHTL7_F6HP4A7YpO7g</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Cvetkovic, D.</creator><creator>Parmee, I.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1999</creationdate><title>Genetic algorithm-based multi-objective optimisation and conceptual engineering design</title><author>Cvetkovic, D. ; Parmee, I.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-d280cd68c83a1c107877f269db149340b37cf57e3030e98389a57dd17575c6743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithm design and analysis</topic><topic>Constraint optimization</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Mathematical model</topic><topic>Optimization methods</topic><topic>Process design</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Cvetkovic, D.</creatorcontrib><creatorcontrib>Parmee, I.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cvetkovic, D.</au><au>Parmee, I.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithm-based multi-objective optimisation and conceptual engineering design</atitle><btitle>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)</btitle><stitle>CEC</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>29</spage><epage>36 Vol. 1</epage><pages>29-36 Vol. 1</pages><isbn>0780355369</isbn><isbn>9780780355361</isbn><abstract>In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This is integrated with two multiobjective genetic algorithms: weighted sums GA and a method for combining the Pareto method with weights. Examples of preference relations application together with traditional genetic algorithms are also presented. A further method for dynamical inclusion and modification of extra constraints (not included in the mathematical model of the system) via scenarios is presented. Its use is discussed and potential applications indicated. Finally, some future work paths are mentioned.</abstract><pub>IEEE</pub><doi>10.1109/CEC.1999.781904</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780355369 |
ispartof | Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, Vol.1, p.29-36 Vol. 1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_781904 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Constraint optimization Design engineering Design optimization Genetic algorithms Genetic engineering Mathematical model Optimization methods Process design Systems engineering and theory |
title | Genetic algorithm-based multi-objective optimisation and conceptual engineering design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithm-based%20multi-objective%20optimisation%20and%20conceptual%20engineering%20design&rft.btitle=Proceedings%20of%20the%201999%20Congress%20on%20Evolutionary%20Computation-CEC99%20(Cat.%20No.%2099TH8406)&rft.au=Cvetkovic,%20D.&rft.date=1999&rft.volume=1&rft.spage=29&rft.epage=36%20Vol.%201&rft.pages=29-36%20Vol.%201&rft.isbn=0780355369&rft.isbn_list=9780780355361&rft_id=info:doi/10.1109/CEC.1999.781904&rft_dat=%3Cieee_6IE%3E781904%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=781904&rfr_iscdi=true |