Genetic algorithm-based multi-objective optimisation and conceptual engineering design

In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cvetkovic, D., Parmee, I.C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36 Vol. 1
container_issue
container_start_page 29
container_title
container_volume 1
creator Cvetkovic, D.
Parmee, I.C.
description In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This is integrated with two multiobjective genetic algorithms: weighted sums GA and a method for combining the Pareto method with weights. Examples of preference relations application together with traditional genetic algorithms are also presented. A further method for dynamical inclusion and modification of extra constraints (not included in the mathematical model of the system) via scenarios is presented. Its use is discussed and potential applications indicated. Finally, some future work paths are mentioned.
doi_str_mv 10.1109/CEC.1999.781904
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_781904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>781904</ieee_id><sourcerecordid>781904</sourcerecordid><originalsourceid>FETCH-LOGICAL-i87t-d280cd68c83a1c107877f269db149340b37cf57e3030e98389a57dd17575c6743</originalsourceid><addsrcrecordid>eNotj0FLwzAYhgMiqHNnwVP-QGfSr2mSo5Q5hYGX4XWkydf6jTYtTSb47x3M9_LcHp6XsScpNlIK-9Jsm4201m60kVZUN-xBaCNAKajtHVundBKXga00lPfsa4cRM3nuhn5aKH-PResSBj6eh0zF1J7QZ_pBPs2ZRkou0xS5i4H7KXqc89kNHGNPEXGh2POAifr4yG47NyRc_3PFDm_bQ_Ne7D93H83rviCjcxFKI3yojTfgpJeXTq27srahlZWFSrSgfac0ggCB1oCxTukQpFZa-VpXsGLPVy0h4nFeaHTL7_F6HP4A7YpO7g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithm-based multi-objective optimisation and conceptual engineering design</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Cvetkovic, D. ; Parmee, I.C.</creator><creatorcontrib>Cvetkovic, D. ; Parmee, I.C.</creatorcontrib><description>In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This is integrated with two multiobjective genetic algorithms: weighted sums GA and a method for combining the Pareto method with weights. Examples of preference relations application together with traditional genetic algorithms are also presented. A further method for dynamical inclusion and modification of extra constraints (not included in the mathematical model of the system) via scenarios is presented. Its use is discussed and potential applications indicated. Finally, some future work paths are mentioned.</description><identifier>ISBN: 0780355369</identifier><identifier>ISBN: 9780780355361</identifier><identifier>DOI: 10.1109/CEC.1999.781904</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Constraint optimization ; Design engineering ; Design optimization ; Genetic algorithms ; Genetic engineering ; Mathematical model ; Optimization methods ; Process design ; Systems engineering and theory</subject><ispartof>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, Vol.1, p.29-36 Vol. 1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/781904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/781904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cvetkovic, D.</creatorcontrib><creatorcontrib>Parmee, I.C.</creatorcontrib><title>Genetic algorithm-based multi-objective optimisation and conceptual engineering design</title><title>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)</title><addtitle>CEC</addtitle><description>In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This is integrated with two multiobjective genetic algorithms: weighted sums GA and a method for combining the Pareto method with weights. Examples of preference relations application together with traditional genetic algorithms are also presented. A further method for dynamical inclusion and modification of extra constraints (not included in the mathematical model of the system) via scenarios is presented. Its use is discussed and potential applications indicated. Finally, some future work paths are mentioned.</description><subject>Algorithm design and analysis</subject><subject>Constraint optimization</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Genetic algorithms</subject><subject>Genetic engineering</subject><subject>Mathematical model</subject><subject>Optimization methods</subject><subject>Process design</subject><subject>Systems engineering and theory</subject><isbn>0780355369</isbn><isbn>9780780355361</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLwzAYhgMiqHNnwVP-QGfSr2mSo5Q5hYGX4XWkydf6jTYtTSb47x3M9_LcHp6XsScpNlIK-9Jsm4201m60kVZUN-xBaCNAKajtHVundBKXga00lPfsa4cRM3nuhn5aKH-PResSBj6eh0zF1J7QZ_pBPs2ZRkou0xS5i4H7KXqc89kNHGNPEXGh2POAifr4yG47NyRc_3PFDm_bQ_Ne7D93H83rviCjcxFKI3yojTfgpJeXTq27srahlZWFSrSgfac0ggCB1oCxTukQpFZa-VpXsGLPVy0h4nFeaHTL7_F6HP4A7YpO7g</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Cvetkovic, D.</creator><creator>Parmee, I.C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1999</creationdate><title>Genetic algorithm-based multi-objective optimisation and conceptual engineering design</title><author>Cvetkovic, D. ; Parmee, I.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i87t-d280cd68c83a1c107877f269db149340b37cf57e3030e98389a57dd17575c6743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithm design and analysis</topic><topic>Constraint optimization</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Genetic algorithms</topic><topic>Genetic engineering</topic><topic>Mathematical model</topic><topic>Optimization methods</topic><topic>Process design</topic><topic>Systems engineering and theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Cvetkovic, D.</creatorcontrib><creatorcontrib>Parmee, I.C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cvetkovic, D.</au><au>Parmee, I.C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithm-based multi-objective optimisation and conceptual engineering design</atitle><btitle>Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)</btitle><stitle>CEC</stitle><date>1999</date><risdate>1999</risdate><volume>1</volume><spage>29</spage><epage>36 Vol. 1</epage><pages>29-36 Vol. 1</pages><isbn>0780355369</isbn><isbn>9780780355361</isbn><abstract>In this paper we present a genetic algorithm based system for conceptual engineering design. First, we present a method based on preference relations for transforming non-crisp (qualitative) relationships between objectives in multi-objective optimisation into quantitative attributes (numbers). This is integrated with two multiobjective genetic algorithms: weighted sums GA and a method for combining the Pareto method with weights. Examples of preference relations application together with traditional genetic algorithms are also presented. A further method for dynamical inclusion and modification of extra constraints (not included in the mathematical model of the system) via scenarios is presented. Its use is discussed and potential applications indicated. Finally, some future work paths are mentioned.</abstract><pub>IEEE</pub><doi>10.1109/CEC.1999.781904</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780355369
ispartof Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1999, Vol.1, p.29-36 Vol. 1
issn
language eng
recordid cdi_ieee_primary_781904
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Constraint optimization
Design engineering
Design optimization
Genetic algorithms
Genetic engineering
Mathematical model
Optimization methods
Process design
Systems engineering and theory
title Genetic algorithm-based multi-objective optimisation and conceptual engineering design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A00%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithm-based%20multi-objective%20optimisation%20and%20conceptual%20engineering%20design&rft.btitle=Proceedings%20of%20the%201999%20Congress%20on%20Evolutionary%20Computation-CEC99%20(Cat.%20No.%2099TH8406)&rft.au=Cvetkovic,%20D.&rft.date=1999&rft.volume=1&rft.spage=29&rft.epage=36%20Vol.%201&rft.pages=29-36%20Vol.%201&rft.isbn=0780355369&rft.isbn_list=9780780355361&rft_id=info:doi/10.1109/CEC.1999.781904&rft_dat=%3Cieee_6IE%3E781904%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=781904&rfr_iscdi=true