Corrosion Behavior and Metallization of Cu-Based Electrodes Using MoNi Alloy and Multilayer Structure for Back-Channel-Etched Oxide Thin-Film Transistor Circuit Integration

Mo/Cu bilayer is the most conventional metal electrode with an excellent electrical conductivity and high environmental resistance for large-area back-channel-etch amorphous oxide thin-film transistors (TFTs) circuit integration. However, the Mo/Cu bilayer is metallized with a poor etch profile in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2017-02, Vol.64 (2), p.447-454
Hauptverfasser: Kim, Da Eun, Cho, Sung Woon, Kim, Sung Chan, Kang, Won Jun, Cho, Hyung Koun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue 2
container_start_page 447
container_title IEEE transactions on electron devices
container_volume 64
creator Kim, Da Eun
Cho, Sung Woon
Kim, Sung Chan
Kang, Won Jun
Cho, Hyung Koun
description Mo/Cu bilayer is the most conventional metal electrode with an excellent electrical conductivity and high environmental resistance for large-area back-channel-etch amorphous oxide thin-film transistors (TFTs) circuit integration. However, the Mo/Cu bilayer is metallized with a poor etch profile in conventional weak acidic H 2 O 2 -based etchant solution. This is attributed to the formation of Mo-related oxide residue and a high etch rate ratio between Mo and Cu, which results in short circuit and electrical degradation in the following microscale metallization and induces electrical instability on oxide TFT. We have replaced Mo with a MoNi (Mo:Ni = 1:3) alloy that has a larger galvanic potential difference in Cu-Ni (E° Cu-Ni : 0.597 V > E° Cu-Mo : 0.492 V) and seldom induces metal oxide residues in conventional etchants. In addition, an alternative three-electrode structure (MoNi/Cu/MoNi) was proposed to suppress Cu ionization by offering sufficient galvanic current from top and bottom MoNi layers. As a result, this MoNi/Cu/MoNi exhibits a wet-etched morphology with a rectangular profile, optimal taper angle, and less CD loss, which allows the formation of microscale metal linewidth. Furthermore, the application of MoNi/Cu/MoNi three-layer electrode in TFTs leads to more reliable electrical performance and good uniformity.
doi_str_mv 10.1109/TED.2016.2642206
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7809085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7809085</ieee_id><sourcerecordid>1860898166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-bf9a27d6cb44034bacf94d67ac3034e5457f4c01eaf1ecb15989eea6f0c740fe3</originalsourceid><addsrcrecordid>eNo9kU9PGzEQxa2qSE2Be6VeLPXsYO96vesjWcIfCcqBcF453jExNTbYXkT6mfohcQjqaTSa33szmofQD0bnjFF5slqezSvKxLwSvKqo-IJmrGlaIgUXX9GMUtYRWXf1N_Q9pcfSCs6rGfrXhxhDssHjBWzUqw0RKz_iG8jKOftX5d0oGNxPZKESjHjpQOcYRkj4Pln_gG_Cb4tPnQvbvXJy2Tq1hYjvcpx0niJgU2wXSv8h_UZ5D44ss94Us9s3OwJebawn59Y94VVUPtmUC97bqCeb8ZXP8BA_7jhCB0a5BMef9RDdny9X_SW5vr246k-via4ky2RtpKraUeg157Tma6WN5KNola5LCw1vWsM1ZaAMA71mjewkgBKG6pZTA_Uh-rX3fY7hZYKUh8cwRV9WDqwTtJMdE6JQdE_p8sAUwQzP0T6puB0YHXaZDCWTYZfJ8JlJkfzcSywA_MfbjkraNfU7EG2LRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860898166</pqid></control><display><type>article</type><title>Corrosion Behavior and Metallization of Cu-Based Electrodes Using MoNi Alloy and Multilayer Structure for Back-Channel-Etched Oxide Thin-Film Transistor Circuit Integration</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Da Eun ; Cho, Sung Woon ; Kim, Sung Chan ; Kang, Won Jun ; Cho, Hyung Koun</creator><creatorcontrib>Kim, Da Eun ; Cho, Sung Woon ; Kim, Sung Chan ; Kang, Won Jun ; Cho, Hyung Koun</creatorcontrib><description>Mo/Cu bilayer is the most conventional metal electrode with an excellent electrical conductivity and high environmental resistance for large-area back-channel-etch amorphous oxide thin-film transistors (TFTs) circuit integration. However, the Mo/Cu bilayer is metallized with a poor etch profile in conventional weak acidic H 2 O 2 -based etchant solution. This is attributed to the formation of Mo-related oxide residue and a high etch rate ratio between Mo and Cu, which results in short circuit and electrical degradation in the following microscale metallization and induces electrical instability on oxide TFT. We have replaced Mo with a MoNi (Mo:Ni = 1:3) alloy that has a larger galvanic potential difference in Cu-Ni (E° Cu-Ni : 0.597 V &gt; E° Cu-Mo : 0.492 V) and seldom induces metal oxide residues in conventional etchants. In addition, an alternative three-electrode structure (MoNi/Cu/MoNi) was proposed to suppress Cu ionization by offering sufficient galvanic current from top and bottom MoNi layers. As a result, this MoNi/Cu/MoNi exhibits a wet-etched morphology with a rectangular profile, optimal taper angle, and less CD loss, which allows the formation of microscale metal linewidth. Furthermore, the application of MoNi/Cu/MoNi three-layer electrode in TFTs leads to more reliable electrical performance and good uniformity.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2016.2642206</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Copper ; Corrosion ; Corrosion behavior ; Electrical resistivity ; Electrodes ; Etching ; Metallization ; Metallizing ; Molybdenum ; molybdenum-nickel (MoNi) alloy ; multilayer electrode ; Multilayers ; Nonhomogeneous media ; Oxides ; Semiconductor devices ; Thin film transistors ; thin-film transistor (TFT) ; wet etching</subject><ispartof>IEEE transactions on electron devices, 2017-02, Vol.64 (2), p.447-454</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-bf9a27d6cb44034bacf94d67ac3034e5457f4c01eaf1ecb15989eea6f0c740fe3</citedby><cites>FETCH-LOGICAL-c291t-bf9a27d6cb44034bacf94d67ac3034e5457f4c01eaf1ecb15989eea6f0c740fe3</cites><orcidid>0000-0003-0861-523X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7809085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7809085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Da Eun</creatorcontrib><creatorcontrib>Cho, Sung Woon</creatorcontrib><creatorcontrib>Kim, Sung Chan</creatorcontrib><creatorcontrib>Kang, Won Jun</creatorcontrib><creatorcontrib>Cho, Hyung Koun</creatorcontrib><title>Corrosion Behavior and Metallization of Cu-Based Electrodes Using MoNi Alloy and Multilayer Structure for Back-Channel-Etched Oxide Thin-Film Transistor Circuit Integration</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Mo/Cu bilayer is the most conventional metal electrode with an excellent electrical conductivity and high environmental resistance for large-area back-channel-etch amorphous oxide thin-film transistors (TFTs) circuit integration. However, the Mo/Cu bilayer is metallized with a poor etch profile in conventional weak acidic H 2 O 2 -based etchant solution. This is attributed to the formation of Mo-related oxide residue and a high etch rate ratio between Mo and Cu, which results in short circuit and electrical degradation in the following microscale metallization and induces electrical instability on oxide TFT. We have replaced Mo with a MoNi (Mo:Ni = 1:3) alloy that has a larger galvanic potential difference in Cu-Ni (E° Cu-Ni : 0.597 V &gt; E° Cu-Mo : 0.492 V) and seldom induces metal oxide residues in conventional etchants. In addition, an alternative three-electrode structure (MoNi/Cu/MoNi) was proposed to suppress Cu ionization by offering sufficient galvanic current from top and bottom MoNi layers. As a result, this MoNi/Cu/MoNi exhibits a wet-etched morphology with a rectangular profile, optimal taper angle, and less CD loss, which allows the formation of microscale metal linewidth. Furthermore, the application of MoNi/Cu/MoNi three-layer electrode in TFTs leads to more reliable electrical performance and good uniformity.</description><subject>Copper</subject><subject>Corrosion</subject><subject>Corrosion behavior</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Etching</subject><subject>Metallization</subject><subject>Metallizing</subject><subject>Molybdenum</subject><subject>molybdenum-nickel (MoNi) alloy</subject><subject>multilayer electrode</subject><subject>Multilayers</subject><subject>Nonhomogeneous media</subject><subject>Oxides</subject><subject>Semiconductor devices</subject><subject>Thin film transistors</subject><subject>thin-film transistor (TFT)</subject><subject>wet etching</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU9PGzEQxa2qSE2Be6VeLPXsYO96vesjWcIfCcqBcF453jExNTbYXkT6mfohcQjqaTSa33szmofQD0bnjFF5slqezSvKxLwSvKqo-IJmrGlaIgUXX9GMUtYRWXf1N_Q9pcfSCs6rGfrXhxhDssHjBWzUqw0RKz_iG8jKOftX5d0oGNxPZKESjHjpQOcYRkj4Pln_gG_Cb4tPnQvbvXJy2Tq1hYjvcpx0niJgU2wXSv8h_UZ5D44ss94Us9s3OwJebawn59Y94VVUPtmUC97bqCeb8ZXP8BA_7jhCB0a5BMef9RDdny9X_SW5vr246k-via4ky2RtpKraUeg157Tma6WN5KNola5LCw1vWsM1ZaAMA71mjewkgBKG6pZTA_Uh-rX3fY7hZYKUh8cwRV9WDqwTtJMdE6JQdE_p8sAUwQzP0T6puB0YHXaZDCWTYZfJ8JlJkfzcSywA_MfbjkraNfU7EG2LRw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Kim, Da Eun</creator><creator>Cho, Sung Woon</creator><creator>Kim, Sung Chan</creator><creator>Kang, Won Jun</creator><creator>Cho, Hyung Koun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0861-523X</orcidid></search><sort><creationdate>20170201</creationdate><title>Corrosion Behavior and Metallization of Cu-Based Electrodes Using MoNi Alloy and Multilayer Structure for Back-Channel-Etched Oxide Thin-Film Transistor Circuit Integration</title><author>Kim, Da Eun ; Cho, Sung Woon ; Kim, Sung Chan ; Kang, Won Jun ; Cho, Hyung Koun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-bf9a27d6cb44034bacf94d67ac3034e5457f4c01eaf1ecb15989eea6f0c740fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Copper</topic><topic>Corrosion</topic><topic>Corrosion behavior</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Etching</topic><topic>Metallization</topic><topic>Metallizing</topic><topic>Molybdenum</topic><topic>molybdenum-nickel (MoNi) alloy</topic><topic>multilayer electrode</topic><topic>Multilayers</topic><topic>Nonhomogeneous media</topic><topic>Oxides</topic><topic>Semiconductor devices</topic><topic>Thin film transistors</topic><topic>thin-film transistor (TFT)</topic><topic>wet etching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Da Eun</creatorcontrib><creatorcontrib>Cho, Sung Woon</creatorcontrib><creatorcontrib>Kim, Sung Chan</creatorcontrib><creatorcontrib>Kang, Won Jun</creatorcontrib><creatorcontrib>Cho, Hyung Koun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Da Eun</au><au>Cho, Sung Woon</au><au>Kim, Sung Chan</au><au>Kang, Won Jun</au><au>Cho, Hyung Koun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion Behavior and Metallization of Cu-Based Electrodes Using MoNi Alloy and Multilayer Structure for Back-Channel-Etched Oxide Thin-Film Transistor Circuit Integration</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>64</volume><issue>2</issue><spage>447</spage><epage>454</epage><pages>447-454</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Mo/Cu bilayer is the most conventional metal electrode with an excellent electrical conductivity and high environmental resistance for large-area back-channel-etch amorphous oxide thin-film transistors (TFTs) circuit integration. However, the Mo/Cu bilayer is metallized with a poor etch profile in conventional weak acidic H 2 O 2 -based etchant solution. This is attributed to the formation of Mo-related oxide residue and a high etch rate ratio between Mo and Cu, which results in short circuit and electrical degradation in the following microscale metallization and induces electrical instability on oxide TFT. We have replaced Mo with a MoNi (Mo:Ni = 1:3) alloy that has a larger galvanic potential difference in Cu-Ni (E° Cu-Ni : 0.597 V &gt; E° Cu-Mo : 0.492 V) and seldom induces metal oxide residues in conventional etchants. In addition, an alternative three-electrode structure (MoNi/Cu/MoNi) was proposed to suppress Cu ionization by offering sufficient galvanic current from top and bottom MoNi layers. As a result, this MoNi/Cu/MoNi exhibits a wet-etched morphology with a rectangular profile, optimal taper angle, and less CD loss, which allows the formation of microscale metal linewidth. Furthermore, the application of MoNi/Cu/MoNi three-layer electrode in TFTs leads to more reliable electrical performance and good uniformity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2016.2642206</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0861-523X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2017-02, Vol.64 (2), p.447-454
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_7809085
source IEEE Electronic Library (IEL)
subjects Copper
Corrosion
Corrosion behavior
Electrical resistivity
Electrodes
Etching
Metallization
Metallizing
Molybdenum
molybdenum-nickel (MoNi) alloy
multilayer electrode
Multilayers
Nonhomogeneous media
Oxides
Semiconductor devices
Thin film transistors
thin-film transistor (TFT)
wet etching
title Corrosion Behavior and Metallization of Cu-Based Electrodes Using MoNi Alloy and Multilayer Structure for Back-Channel-Etched Oxide Thin-Film Transistor Circuit Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20Behavior%20and%20Metallization%20of%20Cu-Based%20Electrodes%20Using%20MoNi%20Alloy%20and%20Multilayer%20Structure%20for%20Back-Channel-Etched%20Oxide%20Thin-Film%20Transistor%20Circuit%20Integration&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Kim,%20Da%20Eun&rft.date=2017-02-01&rft.volume=64&rft.issue=2&rft.spage=447&rft.epage=454&rft.pages=447-454&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2016.2642206&rft_dat=%3Cproquest_RIE%3E1860898166%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860898166&rft_id=info:pmid/&rft_ieee_id=7809085&rfr_iscdi=true