Motion Segmentation and Balancing for a Biped Robot's Imitation Learning
Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human an...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2017-06, Vol.13 (3), p.1099-1108 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1108 |
---|---|
container_issue | 3 |
container_start_page | 1099 |
container_title | IEEE transactions on industrial informatics |
container_volume | 13 |
creator | Hwang, Kao-Shing Jiang, Wei-Cheng Chen, Yu-Jen Shi, Haobin |
description | Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human and humanoid robot kinematics and dynamics. An imitating algorithm called posture-based imitation with balance learning (Post-BL) is proposed in this paper. This Post-BL algorithm consists of three parts: a key posture identification method is used to capture key postures as knots to reconstruct the motion imitated; a clustering method classifies key postures with high similarity; and a learning method enhances the static stability of balance during imitation. In motion reproduction, the proposed system smoothly transits between key poses and the robot learns to maintain balance by slightly adjusting the leg joints. The developed balance controller uses a reinforcement learning mechanism, which is sufficient to stabilize the robot during online imitation. The experimental results for simulation and a real humanoid robot show that the Post-BL algorithm allows demonstrated motions to be imitated balance to be preserved. |
doi_str_mv | 10.1109/TII.2017.2647993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7807322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7807322</ieee_id><sourcerecordid>1905723060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-a0dd3ef6122e58677fc409a99623372a4c9ccc200aeeee37b2918d2463c90cf13</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvAg6etk8zuZnO0Re1CRdB6Dmk2W7a0SU22B_-9qVucy8zAm_ngEXLLYMIYyMdlXU84MDHhZS6kxDMyYjJnGUAB52kuCpYhB7wkVzFuAFAAyhGZv_m-845-2vXOul7_Ldo1dKq32pnOrWnrA9V02u1tQz_8yvcPkda77sQurA4uYdfkotXbaG9OfUy-Xp6Xs3m2eH-tZ0-LzGAh-kxD06BtS8a5LapSiNbkILWUJUcUXOdGGmM4gLapUKy4ZFXD8xKNBNMyHJP74e8--O-Djb3a-ENwKVIxCYXgCCUkCgbKBB9jsK3ah26nw49ioI6-VPKljr7UyVc6uRtOuhT8j4sKBHKOv7tpZSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905723060</pqid></control><display><type>article</type><title>Motion Segmentation and Balancing for a Biped Robot's Imitation Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Hwang, Kao-Shing ; Jiang, Wei-Cheng ; Chen, Yu-Jen ; Shi, Haobin</creator><creatorcontrib>Hwang, Kao-Shing ; Jiang, Wei-Cheng ; Chen, Yu-Jen ; Shi, Haobin</creatorcontrib><description>Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human and humanoid robot kinematics and dynamics. An imitating algorithm called posture-based imitation with balance learning (Post-BL) is proposed in this paper. This Post-BL algorithm consists of three parts: a key posture identification method is used to capture key postures as knots to reconstruct the motion imitated; a clustering method classifies key postures with high similarity; and a learning method enhances the static stability of balance during imitation. In motion reproduction, the proposed system smoothly transits between key poses and the robot learns to maintain balance by slightly adjusting the leg joints. The developed balance controller uses a reinforcement learning mechanism, which is sufficient to stabilize the robot during online imitation. The experimental results for simulation and a real humanoid robot show that the Post-BL algorithm allows demonstrated motions to be imitated balance to be preserved.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2647993</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Clustering methods ; Computer simulation ; Dynamics ; Human behavior ; Human motion ; Humanoid ; Humanoid robots ; imitation learning ; key postures ; Kinematics ; Knots ; Learning (artificial intelligence) ; Machine learning ; Motion stability ; reinforcement learning ; Robot kinematics ; Robots ; Segmentation ; Similarity ; Static stability ; Trajectories ; Transits</subject><ispartof>IEEE transactions on industrial informatics, 2017-06, Vol.13 (3), p.1099-1108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-a0dd3ef6122e58677fc409a99623372a4c9ccc200aeeee37b2918d2463c90cf13</citedby><cites>FETCH-LOGICAL-c357t-a0dd3ef6122e58677fc409a99623372a4c9ccc200aeeee37b2918d2463c90cf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7807322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7807322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwang, Kao-Shing</creatorcontrib><creatorcontrib>Jiang, Wei-Cheng</creatorcontrib><creatorcontrib>Chen, Yu-Jen</creatorcontrib><creatorcontrib>Shi, Haobin</creatorcontrib><title>Motion Segmentation and Balancing for a Biped Robot's Imitation Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human and humanoid robot kinematics and dynamics. An imitating algorithm called posture-based imitation with balance learning (Post-BL) is proposed in this paper. This Post-BL algorithm consists of three parts: a key posture identification method is used to capture key postures as knots to reconstruct the motion imitated; a clustering method classifies key postures with high similarity; and a learning method enhances the static stability of balance during imitation. In motion reproduction, the proposed system smoothly transits between key poses and the robot learns to maintain balance by slightly adjusting the leg joints. The developed balance controller uses a reinforcement learning mechanism, which is sufficient to stabilize the robot during online imitation. The experimental results for simulation and a real humanoid robot show that the Post-BL algorithm allows demonstrated motions to be imitated balance to be preserved.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Computer simulation</subject><subject>Dynamics</subject><subject>Human behavior</subject><subject>Human motion</subject><subject>Humanoid</subject><subject>Humanoid robots</subject><subject>imitation learning</subject><subject>key postures</subject><subject>Kinematics</subject><subject>Knots</subject><subject>Learning (artificial intelligence)</subject><subject>Machine learning</subject><subject>Motion stability</subject><subject>reinforcement learning</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Segmentation</subject><subject>Similarity</subject><subject>Static stability</subject><subject>Trajectories</subject><subject>Transits</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvAg6etk8zuZnO0Re1CRdB6Dmk2W7a0SU22B_-9qVucy8zAm_ngEXLLYMIYyMdlXU84MDHhZS6kxDMyYjJnGUAB52kuCpYhB7wkVzFuAFAAyhGZv_m-845-2vXOul7_Ldo1dKq32pnOrWnrA9V02u1tQz_8yvcPkda77sQurA4uYdfkotXbaG9OfUy-Xp6Xs3m2eH-tZ0-LzGAh-kxD06BtS8a5LapSiNbkILWUJUcUXOdGGmM4gLapUKy4ZFXD8xKNBNMyHJP74e8--O-Djb3a-ENwKVIxCYXgCCUkCgbKBB9jsK3ah26nw49ioI6-VPKljr7UyVc6uRtOuhT8j4sKBHKOv7tpZSY</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Hwang, Kao-Shing</creator><creator>Jiang, Wei-Cheng</creator><creator>Chen, Yu-Jen</creator><creator>Shi, Haobin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>Motion Segmentation and Balancing for a Biped Robot's Imitation Learning</title><author>Hwang, Kao-Shing ; Jiang, Wei-Cheng ; Chen, Yu-Jen ; Shi, Haobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-a0dd3ef6122e58677fc409a99623372a4c9ccc200aeeee37b2918d2463c90cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Computer simulation</topic><topic>Dynamics</topic><topic>Human behavior</topic><topic>Human motion</topic><topic>Humanoid</topic><topic>Humanoid robots</topic><topic>imitation learning</topic><topic>key postures</topic><topic>Kinematics</topic><topic>Knots</topic><topic>Learning (artificial intelligence)</topic><topic>Machine learning</topic><topic>Motion stability</topic><topic>reinforcement learning</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Segmentation</topic><topic>Similarity</topic><topic>Static stability</topic><topic>Trajectories</topic><topic>Transits</topic><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Kao-Shing</creatorcontrib><creatorcontrib>Jiang, Wei-Cheng</creatorcontrib><creatorcontrib>Chen, Yu-Jen</creatorcontrib><creatorcontrib>Shi, Haobin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwang, Kao-Shing</au><au>Jiang, Wei-Cheng</au><au>Chen, Yu-Jen</au><au>Shi, Haobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion Segmentation and Balancing for a Biped Robot's Imitation Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>13</volume><issue>3</issue><spage>1099</spage><epage>1108</epage><pages>1099-1108</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human and humanoid robot kinematics and dynamics. An imitating algorithm called posture-based imitation with balance learning (Post-BL) is proposed in this paper. This Post-BL algorithm consists of three parts: a key posture identification method is used to capture key postures as knots to reconstruct the motion imitated; a clustering method classifies key postures with high similarity; and a learning method enhances the static stability of balance during imitation. In motion reproduction, the proposed system smoothly transits between key poses and the robot learns to maintain balance by slightly adjusting the leg joints. The developed balance controller uses a reinforcement learning mechanism, which is sufficient to stabilize the robot during online imitation. The experimental results for simulation and a real humanoid robot show that the Post-BL algorithm allows demonstrated motions to be imitated balance to be preserved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2647993</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2017-06, Vol.13 (3), p.1099-1108 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_7807322 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Clustering Clustering algorithms Clustering methods Computer simulation Dynamics Human behavior Human motion Humanoid Humanoid robots imitation learning key postures Kinematics Knots Learning (artificial intelligence) Machine learning Motion stability reinforcement learning Robot kinematics Robots Segmentation Similarity Static stability Trajectories Transits |
title | Motion Segmentation and Balancing for a Biped Robot's Imitation Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20Segmentation%20and%20Balancing%20for%20a%20Biped%20Robot's%20Imitation%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Hwang,%20Kao-Shing&rft.date=2017-06-01&rft.volume=13&rft.issue=3&rft.spage=1099&rft.epage=1108&rft.pages=1099-1108&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2647993&rft_dat=%3Cproquest_RIE%3E1905723060%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905723060&rft_id=info:pmid/&rft_ieee_id=7807322&rfr_iscdi=true |