Motion Segmentation and Balancing for a Biped Robot's Imitation Learning

Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2017-06, Vol.13 (3), p.1099-1108
Hauptverfasser: Hwang, Kao-Shing, Jiang, Wei-Cheng, Chen, Yu-Jen, Shi, Haobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1108
container_issue 3
container_start_page 1099
container_title IEEE transactions on industrial informatics
container_volume 13
creator Hwang, Kao-Shing
Jiang, Wei-Cheng
Chen, Yu-Jen
Shi, Haobin
description Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human and humanoid robot kinematics and dynamics. An imitating algorithm called posture-based imitation with balance learning (Post-BL) is proposed in this paper. This Post-BL algorithm consists of three parts: a key posture identification method is used to capture key postures as knots to reconstruct the motion imitated; a clustering method classifies key postures with high similarity; and a learning method enhances the static stability of balance during imitation. In motion reproduction, the proposed system smoothly transits between key poses and the robot learns to maintain balance by slightly adjusting the leg joints. The developed balance controller uses a reinforcement learning mechanism, which is sufficient to stabilize the robot during online imitation. The experimental results for simulation and a real humanoid robot show that the Post-BL algorithm allows demonstrated motions to be imitated balance to be preserved.
doi_str_mv 10.1109/TII.2017.2647993
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7807322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7807322</ieee_id><sourcerecordid>1905723060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-a0dd3ef6122e58677fc409a99623372a4c9ccc200aeeee37b2918d2463c90cf13</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvAg6etk8zuZnO0Re1CRdB6Dmk2W7a0SU22B_-9qVucy8zAm_ngEXLLYMIYyMdlXU84MDHhZS6kxDMyYjJnGUAB52kuCpYhB7wkVzFuAFAAyhGZv_m-845-2vXOul7_Ldo1dKq32pnOrWnrA9V02u1tQz_8yvcPkda77sQurA4uYdfkotXbaG9OfUy-Xp6Xs3m2eH-tZ0-LzGAh-kxD06BtS8a5LapSiNbkILWUJUcUXOdGGmM4gLapUKy4ZFXD8xKNBNMyHJP74e8--O-Djb3a-ENwKVIxCYXgCCUkCgbKBB9jsK3ah26nw49ioI6-VPKljr7UyVc6uRtOuhT8j4sKBHKOv7tpZSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905723060</pqid></control><display><type>article</type><title>Motion Segmentation and Balancing for a Biped Robot's Imitation Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Hwang, Kao-Shing ; Jiang, Wei-Cheng ; Chen, Yu-Jen ; Shi, Haobin</creator><creatorcontrib>Hwang, Kao-Shing ; Jiang, Wei-Cheng ; Chen, Yu-Jen ; Shi, Haobin</creatorcontrib><description>Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human and humanoid robot kinematics and dynamics. An imitating algorithm called posture-based imitation with balance learning (Post-BL) is proposed in this paper. This Post-BL algorithm consists of three parts: a key posture identification method is used to capture key postures as knots to reconstruct the motion imitated; a clustering method classifies key postures with high similarity; and a learning method enhances the static stability of balance during imitation. In motion reproduction, the proposed system smoothly transits between key poses and the robot learns to maintain balance by slightly adjusting the leg joints. The developed balance controller uses a reinforcement learning mechanism, which is sufficient to stabilize the robot during online imitation. The experimental results for simulation and a real humanoid robot show that the Post-BL algorithm allows demonstrated motions to be imitated balance to be preserved.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2017.2647993</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Clustering methods ; Computer simulation ; Dynamics ; Human behavior ; Human motion ; Humanoid ; Humanoid robots ; imitation learning ; key postures ; Kinematics ; Knots ; Learning (artificial intelligence) ; Machine learning ; Motion stability ; reinforcement learning ; Robot kinematics ; Robots ; Segmentation ; Similarity ; Static stability ; Trajectories ; Transits</subject><ispartof>IEEE transactions on industrial informatics, 2017-06, Vol.13 (3), p.1099-1108</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-a0dd3ef6122e58677fc409a99623372a4c9ccc200aeeee37b2918d2463c90cf13</citedby><cites>FETCH-LOGICAL-c357t-a0dd3ef6122e58677fc409a99623372a4c9ccc200aeeee37b2918d2463c90cf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7807322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7807322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hwang, Kao-Shing</creatorcontrib><creatorcontrib>Jiang, Wei-Cheng</creatorcontrib><creatorcontrib>Chen, Yu-Jen</creatorcontrib><creatorcontrib>Shi, Haobin</creatorcontrib><title>Motion Segmentation and Balancing for a Biped Robot's Imitation Learning</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human and humanoid robot kinematics and dynamics. An imitating algorithm called posture-based imitation with balance learning (Post-BL) is proposed in this paper. This Post-BL algorithm consists of three parts: a key posture identification method is used to capture key postures as knots to reconstruct the motion imitated; a clustering method classifies key postures with high similarity; and a learning method enhances the static stability of balance during imitation. In motion reproduction, the proposed system smoothly transits between key poses and the robot learns to maintain balance by slightly adjusting the leg joints. The developed balance controller uses a reinforcement learning mechanism, which is sufficient to stabilize the robot during online imitation. The experimental results for simulation and a real humanoid robot show that the Post-BL algorithm allows demonstrated motions to be imitated balance to be preserved.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Computer simulation</subject><subject>Dynamics</subject><subject>Human behavior</subject><subject>Human motion</subject><subject>Humanoid</subject><subject>Humanoid robots</subject><subject>imitation learning</subject><subject>key postures</subject><subject>Kinematics</subject><subject>Knots</subject><subject>Learning (artificial intelligence)</subject><subject>Machine learning</subject><subject>Motion stability</subject><subject>reinforcement learning</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Segmentation</subject><subject>Similarity</subject><subject>Static stability</subject><subject>Trajectories</subject><subject>Transits</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvAg6etk8zuZnO0Re1CRdB6Dmk2W7a0SU22B_-9qVucy8zAm_ngEXLLYMIYyMdlXU84MDHhZS6kxDMyYjJnGUAB52kuCpYhB7wkVzFuAFAAyhGZv_m-845-2vXOul7_Ldo1dKq32pnOrWnrA9V02u1tQz_8yvcPkda77sQurA4uYdfkotXbaG9OfUy-Xp6Xs3m2eH-tZ0-LzGAh-kxD06BtS8a5LapSiNbkILWUJUcUXOdGGmM4gLapUKy4ZFXD8xKNBNMyHJP74e8--O-Djb3a-ENwKVIxCYXgCCUkCgbKBB9jsK3ah26nw49ioI6-VPKljr7UyVc6uRtOuhT8j4sKBHKOv7tpZSY</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Hwang, Kao-Shing</creator><creator>Jiang, Wei-Cheng</creator><creator>Chen, Yu-Jen</creator><creator>Shi, Haobin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>Motion Segmentation and Balancing for a Biped Robot's Imitation Learning</title><author>Hwang, Kao-Shing ; Jiang, Wei-Cheng ; Chen, Yu-Jen ; Shi, Haobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-a0dd3ef6122e58677fc409a99623372a4c9ccc200aeeee37b2918d2463c90cf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Computer simulation</topic><topic>Dynamics</topic><topic>Human behavior</topic><topic>Human motion</topic><topic>Humanoid</topic><topic>Humanoid robots</topic><topic>imitation learning</topic><topic>key postures</topic><topic>Kinematics</topic><topic>Knots</topic><topic>Learning (artificial intelligence)</topic><topic>Machine learning</topic><topic>Motion stability</topic><topic>reinforcement learning</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Segmentation</topic><topic>Similarity</topic><topic>Static stability</topic><topic>Trajectories</topic><topic>Transits</topic><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Kao-Shing</creatorcontrib><creatorcontrib>Jiang, Wei-Cheng</creatorcontrib><creatorcontrib>Chen, Yu-Jen</creatorcontrib><creatorcontrib>Shi, Haobin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hwang, Kao-Shing</au><au>Jiang, Wei-Cheng</au><au>Chen, Yu-Jen</au><au>Shi, Haobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion Segmentation and Balancing for a Biped Robot's Imitation Learning</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>13</volume><issue>3</issue><spage>1099</spage><epage>1108</epage><pages>1099-1108</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Techniques for transferring human behaviors to robots through learning by imitation/demonstration have been the subject of much study. However, direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements because of the differences in human and humanoid robot kinematics and dynamics. An imitating algorithm called posture-based imitation with balance learning (Post-BL) is proposed in this paper. This Post-BL algorithm consists of three parts: a key posture identification method is used to capture key postures as knots to reconstruct the motion imitated; a clustering method classifies key postures with high similarity; and a learning method enhances the static stability of balance during imitation. In motion reproduction, the proposed system smoothly transits between key poses and the robot learns to maintain balance by slightly adjusting the leg joints. The developed balance controller uses a reinforcement learning mechanism, which is sufficient to stabilize the robot during online imitation. The experimental results for simulation and a real humanoid robot show that the Post-BL algorithm allows demonstrated motions to be imitated balance to be preserved.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2017.2647993</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2017-06, Vol.13 (3), p.1099-1108
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_7807322
source IEEE Electronic Library (IEL)
subjects Algorithms
Clustering
Clustering algorithms
Clustering methods
Computer simulation
Dynamics
Human behavior
Human motion
Humanoid
Humanoid robots
imitation learning
key postures
Kinematics
Knots
Learning (artificial intelligence)
Machine learning
Motion stability
reinforcement learning
Robot kinematics
Robots
Segmentation
Similarity
Static stability
Trajectories
Transits
title Motion Segmentation and Balancing for a Biped Robot's Imitation Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20Segmentation%20and%20Balancing%20for%20a%20Biped%20Robot's%20Imitation%20Learning&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Hwang,%20Kao-Shing&rft.date=2017-06-01&rft.volume=13&rft.issue=3&rft.spage=1099&rft.epage=1108&rft.pages=1099-1108&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2017.2647993&rft_dat=%3Cproquest_RIE%3E1905723060%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905723060&rft_id=info:pmid/&rft_ieee_id=7807322&rfr_iscdi=true