Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures

Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2017-06, Vol.66 (2), p.319-338
Hauptverfasser: Khosravi, Faramarz, Glas, Michael, Teich, Jurgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 2
container_start_page 319
container_title IEEE transactions on reliability
container_volume 66
creator Khosravi, Faramarz
Glas, Michael
Teich, Jurgen
description Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabilistic, i.e., when a common cause occurs, the affected components fail with different probabilities. Existing techniques that consider probabilistic CCFs (PCCFs) introduce significant execution time and memory overheads to the underlying reliability analysis-limiting their application to small systems only. This paper proposes a fast and automatic PCCF analysis that is based on i) deriving the mutually exclusive success paths of the system using binary decision diagrams (BDDs), and ii) analyzing each path considering PCCFs using explicit and implicit methods. Moreover, an alternative stochastic logic-based technique is presented that compromises analysis accuracy for execution time, and can be used when BDD-based techniques are prohibitive due to their memory overheads. Experimental results show that compared to the state of the art, our methods calculate the system's reliability between 1.1 × and 43.4 × faster while requiring up to 99.94 % less memory.
doi_str_mv 10.1109/TR.2016.2638320
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7805166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7805166</ieee_id><sourcerecordid>1905708594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-d47ed620da735a83e570df5ff9b9cb4fa7a0d0965f4c736d8d5d4291670199f53</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKdnD14CnjuTND-PozgVBsrYziFtEsxom5m0h_33dm54-r4Pnvfl4wHgEaMFxki9bDcLgjBfEF7KkqArMMOMyQILgq_BDCEsC8WIugV3Oe-nk1IlZ2C3HIfYmSE0cOPaYOrQhuEIl71pjzlkGHo4fDv4lVx2feNg9NMe6z8un1JV7LrYw8qM2cGVCe04offgxps2u4fLnIPd6nVbvRfrz7eParkuGiLVUFgqnOUEWSNKZmTpmEDWM-9VrZqaeiMMskhx5mkjSm6lZZYShblAWCnPyjl4PvceUvwZXR70Po5p-j1rrNDUJpmiE_VyppoUc07O60MKnUlHjZE-udPbjT650xd3U-LpnAjOuX9aSMQw5-UvGVNqRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905708594</pqid></control><display><type>article</type><title>Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures</title><source>IEEE Electronic Library Online</source><creator>Khosravi, Faramarz ; Glas, Michael ; Teich, Jurgen</creator><creatorcontrib>Khosravi, Faramarz ; Glas, Michael ; Teich, Jurgen</creatorcontrib><description>Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabilistic, i.e., when a common cause occurs, the affected components fail with different probabilities. Existing techniques that consider probabilistic CCFs (PCCFs) introduce significant execution time and memory overheads to the underlying reliability analysis-limiting their application to small systems only. This paper proposes a fast and automatic PCCF analysis that is based on i) deriving the mutually exclusive success paths of the system using binary decision diagrams (BDDs), and ii) analyzing each path considering PCCFs using explicit and implicit methods. Moreover, an alternative stochastic logic-based technique is presented that compromises analysis accuracy for execution time, and can be used when BDD-based techniques are prohibitive due to their memory overheads. Experimental results show that compared to the state of the art, our methods calculate the system's reliability between 1.1 × and 43.4 × faster while requiring up to 99.94 % less memory.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2016.2638320</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Automation ; Binary decision diagrams (BDDs) ; Common cause failures ; Computer memory ; Decision analysis ; design space exploration (DSE) ; Failure ; Fault tolerance ; Fault tolerant systems ; Implicit methods ; Logic ; Mathematical analysis ; probabilistic common cause failures (PCCFs) ; Probabilistic logic ; Probabilistic methods ; Probability ; Probability theory ; Reliability analysis ; Reliability engineering ; State of the art ; stochastic logic ; Systems analysis</subject><ispartof>IEEE transactions on reliability, 2017-06, Vol.66 (2), p.319-338</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-d47ed620da735a83e570df5ff9b9cb4fa7a0d0965f4c736d8d5d4291670199f53</citedby><cites>FETCH-LOGICAL-c289t-d47ed620da735a83e570df5ff9b9cb4fa7a0d0965f4c736d8d5d4291670199f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7805166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7805166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khosravi, Faramarz</creatorcontrib><creatorcontrib>Glas, Michael</creatorcontrib><creatorcontrib>Teich, Jurgen</creatorcontrib><title>Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabilistic, i.e., when a common cause occurs, the affected components fail with different probabilities. Existing techniques that consider probabilistic CCFs (PCCFs) introduce significant execution time and memory overheads to the underlying reliability analysis-limiting their application to small systems only. This paper proposes a fast and automatic PCCF analysis that is based on i) deriving the mutually exclusive success paths of the system using binary decision diagrams (BDDs), and ii) analyzing each path considering PCCFs using explicit and implicit methods. Moreover, an alternative stochastic logic-based technique is presented that compromises analysis accuracy for execution time, and can be used when BDD-based techniques are prohibitive due to their memory overheads. Experimental results show that compared to the state of the art, our methods calculate the system's reliability between 1.1 × and 43.4 × faster while requiring up to 99.94 % less memory.</description><subject>Analytical models</subject><subject>Automation</subject><subject>Binary decision diagrams (BDDs)</subject><subject>Common cause failures</subject><subject>Computer memory</subject><subject>Decision analysis</subject><subject>design space exploration (DSE)</subject><subject>Failure</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Implicit methods</subject><subject>Logic</subject><subject>Mathematical analysis</subject><subject>probabilistic common cause failures (PCCFs)</subject><subject>Probabilistic logic</subject><subject>Probabilistic methods</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>State of the art</subject><subject>stochastic logic</subject><subject>Systems analysis</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKdnD14CnjuTND-PozgVBsrYziFtEsxom5m0h_33dm54-r4Pnvfl4wHgEaMFxki9bDcLgjBfEF7KkqArMMOMyQILgq_BDCEsC8WIugV3Oe-nk1IlZ2C3HIfYmSE0cOPaYOrQhuEIl71pjzlkGHo4fDv4lVx2feNg9NMe6z8un1JV7LrYw8qM2cGVCe04offgxps2u4fLnIPd6nVbvRfrz7eParkuGiLVUFgqnOUEWSNKZmTpmEDWM-9VrZqaeiMMskhx5mkjSm6lZZYShblAWCnPyjl4PvceUvwZXR70Po5p-j1rrNDUJpmiE_VyppoUc07O60MKnUlHjZE-udPbjT650xd3U-LpnAjOuX9aSMQw5-UvGVNqRA</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Khosravi, Faramarz</creator><creator>Glas, Michael</creator><creator>Teich, Jurgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201706</creationdate><title>Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures</title><author>Khosravi, Faramarz ; Glas, Michael ; Teich, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-d47ed620da735a83e570df5ff9b9cb4fa7a0d0965f4c736d8d5d4291670199f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Automation</topic><topic>Binary decision diagrams (BDDs)</topic><topic>Common cause failures</topic><topic>Computer memory</topic><topic>Decision analysis</topic><topic>design space exploration (DSE)</topic><topic>Failure</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Implicit methods</topic><topic>Logic</topic><topic>Mathematical analysis</topic><topic>probabilistic common cause failures (PCCFs)</topic><topic>Probabilistic logic</topic><topic>Probabilistic methods</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>State of the art</topic><topic>stochastic logic</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khosravi, Faramarz</creatorcontrib><creatorcontrib>Glas, Michael</creatorcontrib><creatorcontrib>Teich, Jurgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khosravi, Faramarz</au><au>Glas, Michael</au><au>Teich, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2017-06</date><risdate>2017</risdate><volume>66</volume><issue>2</issue><spage>319</spage><epage>338</epage><pages>319-338</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabilistic, i.e., when a common cause occurs, the affected components fail with different probabilities. Existing techniques that consider probabilistic CCFs (PCCFs) introduce significant execution time and memory overheads to the underlying reliability analysis-limiting their application to small systems only. This paper proposes a fast and automatic PCCF analysis that is based on i) deriving the mutually exclusive success paths of the system using binary decision diagrams (BDDs), and ii) analyzing each path considering PCCFs using explicit and implicit methods. Moreover, an alternative stochastic logic-based technique is presented that compromises analysis accuracy for execution time, and can be used when BDD-based techniques are prohibitive due to their memory overheads. Experimental results show that compared to the state of the art, our methods calculate the system's reliability between 1.1 × and 43.4 × faster while requiring up to 99.94 % less memory.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2016.2638320</doi><tpages>20</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2017-06, Vol.66 (2), p.319-338
issn 0018-9529
1558-1721
language eng
recordid cdi_ieee_primary_7805166
source IEEE Electronic Library Online
subjects Analytical models
Automation
Binary decision diagrams (BDDs)
Common cause failures
Computer memory
Decision analysis
design space exploration (DSE)
Failure
Fault tolerance
Fault tolerant systems
Implicit methods
Logic
Mathematical analysis
probabilistic common cause failures (PCCFs)
Probabilistic logic
Probabilistic methods
Probability
Probability theory
Reliability analysis
Reliability engineering
State of the art
stochastic logic
Systems analysis
title Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Reliability%20Analysis%20in%20the%20Presence%20of%20Probabilistic%20Common%20Cause%20Failures&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Khosravi,%20Faramarz&rft.date=2017-06&rft.volume=66&rft.issue=2&rft.spage=319&rft.epage=338&rft.pages=319-338&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2016.2638320&rft_dat=%3Cproquest_RIE%3E1905708594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905708594&rft_id=info:pmid/&rft_ieee_id=7805166&rfr_iscdi=true