Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures
Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabil...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2017-06, Vol.66 (2), p.319-338 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 338 |
---|---|
container_issue | 2 |
container_start_page | 319 |
container_title | IEEE transactions on reliability |
container_volume | 66 |
creator | Khosravi, Faramarz Glas, Michael Teich, Jurgen |
description | Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabilistic, i.e., when a common cause occurs, the affected components fail with different probabilities. Existing techniques that consider probabilistic CCFs (PCCFs) introduce significant execution time and memory overheads to the underlying reliability analysis-limiting their application to small systems only. This paper proposes a fast and automatic PCCF analysis that is based on i) deriving the mutually exclusive success paths of the system using binary decision diagrams (BDDs), and ii) analyzing each path considering PCCFs using explicit and implicit methods. Moreover, an alternative stochastic logic-based technique is presented that compromises analysis accuracy for execution time, and can be used when BDD-based techniques are prohibitive due to their memory overheads. Experimental results show that compared to the state of the art, our methods calculate the system's reliability between 1.1 × and 43.4 × faster while requiring up to 99.94 % less memory. |
doi_str_mv | 10.1109/TR.2016.2638320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7805166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7805166</ieee_id><sourcerecordid>1905708594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-d47ed620da735a83e570df5ff9b9cb4fa7a0d0965f4c736d8d5d4291670199f53</originalsourceid><addsrcrecordid>eNo9kM9LwzAYhoMoOKdnD14CnjuTND-PozgVBsrYziFtEsxom5m0h_33dm54-r4Pnvfl4wHgEaMFxki9bDcLgjBfEF7KkqArMMOMyQILgq_BDCEsC8WIugV3Oe-nk1IlZ2C3HIfYmSE0cOPaYOrQhuEIl71pjzlkGHo4fDv4lVx2feNg9NMe6z8un1JV7LrYw8qM2cGVCe04offgxps2u4fLnIPd6nVbvRfrz7eParkuGiLVUFgqnOUEWSNKZmTpmEDWM-9VrZqaeiMMskhx5mkjSm6lZZYShblAWCnPyjl4PvceUvwZXR70Po5p-j1rrNDUJpmiE_VyppoUc07O60MKnUlHjZE-udPbjT650xd3U-LpnAjOuX9aSMQw5-UvGVNqRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1905708594</pqid></control><display><type>article</type><title>Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures</title><source>IEEE Electronic Library Online</source><creator>Khosravi, Faramarz ; Glas, Michael ; Teich, Jurgen</creator><creatorcontrib>Khosravi, Faramarz ; Glas, Michael ; Teich, Jurgen</creatorcontrib><description>Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabilistic, i.e., when a common cause occurs, the affected components fail with different probabilities. Existing techniques that consider probabilistic CCFs (PCCFs) introduce significant execution time and memory overheads to the underlying reliability analysis-limiting their application to small systems only. This paper proposes a fast and automatic PCCF analysis that is based on i) deriving the mutually exclusive success paths of the system using binary decision diagrams (BDDs), and ii) analyzing each path considering PCCFs using explicit and implicit methods. Moreover, an alternative stochastic logic-based technique is presented that compromises analysis accuracy for execution time, and can be used when BDD-based techniques are prohibitive due to their memory overheads. Experimental results show that compared to the state of the art, our methods calculate the system's reliability between 1.1 × and 43.4 × faster while requiring up to 99.94 % less memory.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2016.2638320</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Automation ; Binary decision diagrams (BDDs) ; Common cause failures ; Computer memory ; Decision analysis ; design space exploration (DSE) ; Failure ; Fault tolerance ; Fault tolerant systems ; Implicit methods ; Logic ; Mathematical analysis ; probabilistic common cause failures (PCCFs) ; Probabilistic logic ; Probabilistic methods ; Probability ; Probability theory ; Reliability analysis ; Reliability engineering ; State of the art ; stochastic logic ; Systems analysis</subject><ispartof>IEEE transactions on reliability, 2017-06, Vol.66 (2), p.319-338</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-d47ed620da735a83e570df5ff9b9cb4fa7a0d0965f4c736d8d5d4291670199f53</citedby><cites>FETCH-LOGICAL-c289t-d47ed620da735a83e570df5ff9b9cb4fa7a0d0965f4c736d8d5d4291670199f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7805166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7805166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khosravi, Faramarz</creatorcontrib><creatorcontrib>Glas, Michael</creatorcontrib><creatorcontrib>Teich, Jurgen</creatorcontrib><title>Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabilistic, i.e., when a common cause occurs, the affected components fail with different probabilities. Existing techniques that consider probabilistic CCFs (PCCFs) introduce significant execution time and memory overheads to the underlying reliability analysis-limiting their application to small systems only. This paper proposes a fast and automatic PCCF analysis that is based on i) deriving the mutually exclusive success paths of the system using binary decision diagrams (BDDs), and ii) analyzing each path considering PCCFs using explicit and implicit methods. Moreover, an alternative stochastic logic-based technique is presented that compromises analysis accuracy for execution time, and can be used when BDD-based techniques are prohibitive due to their memory overheads. Experimental results show that compared to the state of the art, our methods calculate the system's reliability between 1.1 × and 43.4 × faster while requiring up to 99.94 % less memory.</description><subject>Analytical models</subject><subject>Automation</subject><subject>Binary decision diagrams (BDDs)</subject><subject>Common cause failures</subject><subject>Computer memory</subject><subject>Decision analysis</subject><subject>design space exploration (DSE)</subject><subject>Failure</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Implicit methods</subject><subject>Logic</subject><subject>Mathematical analysis</subject><subject>probabilistic common cause failures (PCCFs)</subject><subject>Probabilistic logic</subject><subject>Probabilistic methods</subject><subject>Probability</subject><subject>Probability theory</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>State of the art</subject><subject>stochastic logic</subject><subject>Systems analysis</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAYhoMoOKdnD14CnjuTND-PozgVBsrYziFtEsxom5m0h_33dm54-r4Pnvfl4wHgEaMFxki9bDcLgjBfEF7KkqArMMOMyQILgq_BDCEsC8WIugV3Oe-nk1IlZ2C3HIfYmSE0cOPaYOrQhuEIl71pjzlkGHo4fDv4lVx2feNg9NMe6z8un1JV7LrYw8qM2cGVCe04offgxps2u4fLnIPd6nVbvRfrz7eParkuGiLVUFgqnOUEWSNKZmTpmEDWM-9VrZqaeiMMskhx5mkjSm6lZZYShblAWCnPyjl4PvceUvwZXR70Po5p-j1rrNDUJpmiE_VyppoUc07O60MKnUlHjZE-udPbjT650xd3U-LpnAjOuX9aSMQw5-UvGVNqRA</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Khosravi, Faramarz</creator><creator>Glas, Michael</creator><creator>Teich, Jurgen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201706</creationdate><title>Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures</title><author>Khosravi, Faramarz ; Glas, Michael ; Teich, Jurgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-d47ed620da735a83e570df5ff9b9cb4fa7a0d0965f4c736d8d5d4291670199f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Automation</topic><topic>Binary decision diagrams (BDDs)</topic><topic>Common cause failures</topic><topic>Computer memory</topic><topic>Decision analysis</topic><topic>design space exploration (DSE)</topic><topic>Failure</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Implicit methods</topic><topic>Logic</topic><topic>Mathematical analysis</topic><topic>probabilistic common cause failures (PCCFs)</topic><topic>Probabilistic logic</topic><topic>Probabilistic methods</topic><topic>Probability</topic><topic>Probability theory</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>State of the art</topic><topic>stochastic logic</topic><topic>Systems analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khosravi, Faramarz</creatorcontrib><creatorcontrib>Glas, Michael</creatorcontrib><creatorcontrib>Teich, Jurgen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khosravi, Faramarz</au><au>Glas, Michael</au><au>Teich, Jurgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2017-06</date><risdate>2017</risdate><volume>66</volume><issue>2</issue><spage>319</spage><epage>338</epage><pages>319-338</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Common cause failures (CCFs) are simultaneous failures of multiple components in a system and must be considered for accurate and realistic reliability analysis. Traditional CCF analysis techniques typically assume deterministic failures of the affected components. However, CCFs are usually probabilistic, i.e., when a common cause occurs, the affected components fail with different probabilities. Existing techniques that consider probabilistic CCFs (PCCFs) introduce significant execution time and memory overheads to the underlying reliability analysis-limiting their application to small systems only. This paper proposes a fast and automatic PCCF analysis that is based on i) deriving the mutually exclusive success paths of the system using binary decision diagrams (BDDs), and ii) analyzing each path considering PCCFs using explicit and implicit methods. Moreover, an alternative stochastic logic-based technique is presented that compromises analysis accuracy for execution time, and can be used when BDD-based techniques are prohibitive due to their memory overheads. Experimental results show that compared to the state of the art, our methods calculate the system's reliability between 1.1 × and 43.4 × faster while requiring up to 99.94 % less memory.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TR.2016.2638320</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2017-06, Vol.66 (2), p.319-338 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_ieee_primary_7805166 |
source | IEEE Electronic Library Online |
subjects | Analytical models Automation Binary decision diagrams (BDDs) Common cause failures Computer memory Decision analysis design space exploration (DSE) Failure Fault tolerance Fault tolerant systems Implicit methods Logic Mathematical analysis probabilistic common cause failures (PCCFs) Probabilistic logic Probabilistic methods Probability Probability theory Reliability analysis Reliability engineering State of the art stochastic logic Systems analysis |
title | Automatic Reliability Analysis in the Presence of Probabilistic Common Cause Failures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T15%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Reliability%20Analysis%20in%20the%20Presence%20of%20Probabilistic%20Common%20Cause%20Failures&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Khosravi,%20Faramarz&rft.date=2017-06&rft.volume=66&rft.issue=2&rft.spage=319&rft.epage=338&rft.pages=319-338&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2016.2638320&rft_dat=%3Cproquest_RIE%3E1905708594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1905708594&rft_id=info:pmid/&rft_ieee_id=7805166&rfr_iscdi=true |