Deep Coupled Metric Learning for Cross-Modal Matching

In this paper, we propose a new deep coupled metric learning (DCML) method for cross-modal matching, which aims to match samples captured from two different modalities (e.g., texts versus images, visible versus near infrared images). Unlike existing cross-modal matching methods which learn a linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2017-06, Vol.19 (6), p.1234-1244
Hauptverfasser: Liong, Venice Erin, Jiwen Lu, Yap-Peng Tan, Jie Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1244
container_issue 6
container_start_page 1234
container_title IEEE transactions on multimedia
container_volume 19
creator Liong, Venice Erin
Jiwen Lu
Yap-Peng Tan
Jie Zhou
description In this paper, we propose a new deep coupled metric learning (DCML) method for cross-modal matching, which aims to match samples captured from two different modalities (e.g., texts versus images, visible versus near infrared images). Unlike existing cross-modal matching methods which learn a linear common space to reduce the modality gap, our DCML designs two feedforward neural networks which learn two sets of hierarchical nonlinear transformations (one set for each modality) to nonlinearly map samples from different modalities into a shared latent feature subspace, under which the intraclass variation is minimized and the interclass variation is maximized, and the difference of each data pair captured from two modalities of the same class is minimized, respectively. Experimental results on four different cross-modal matching datasets validate the efficacy of the proposed approach.
doi_str_mv 10.1109/TMM.2016.2646180
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7801952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7801952</ieee_id><sourcerecordid>1901491546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-83455c8547b982e163c9ebdfb22757851ad7e9aed174470e0bd4b5698d8bd4553</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqWwI7FEYk65c-zYHlGggNSIpcyWE18gVWiCkwz897hqxXRPuvfu48fYLcIKEczDtixXHDBf8VzkqOGMLdAITAGUOo9ackgNR7hkV-O4A0AhQS2YfCIakqKfh458UtIU2jrZkAv7dv-ZNH1IitCPY1r23nVJ6ab6Kzau2UXjupFuTnXJPtbP2-I13by_vBWPm7TmBqdUZ0LKWkuhKqM5YZ7VhirfVJwrqbRE5xUZRx6VEAoIKi8qmRvtdVRSZkt2f5w7hP5npnGyu34O-7jSookvGJQijy44uurDqYEaO4T224Vfi2APcGyEYw9w7AlOjNwdIy0R_duVBjSSZ3-vYl3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901491546</pqid></control><display><type>article</type><title>Deep Coupled Metric Learning for Cross-Modal Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Liong, Venice Erin ; Jiwen Lu ; Yap-Peng Tan ; Jie Zhou</creator><creatorcontrib>Liong, Venice Erin ; Jiwen Lu ; Yap-Peng Tan ; Jie Zhou</creatorcontrib><description>In this paper, we propose a new deep coupled metric learning (DCML) method for cross-modal matching, which aims to match samples captured from two different modalities (e.g., texts versus images, visible versus near infrared images). Unlike existing cross-modal matching methods which learn a linear common space to reduce the modality gap, our DCML designs two feedforward neural networks which learn two sets of hierarchical nonlinear transformations (one set for each modality) to nonlinearly map samples from different modalities into a shared latent feature subspace, under which the intraclass variation is minimized and the interclass variation is maximized, and the difference of each data pair captured from two modalities of the same class is minimized, respectively. Experimental results on four different cross-modal matching datasets validate the efficacy of the proposed approach.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2016.2646180</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Correlation ; Coupled learning ; cross-modal matching ; deep model ; Infrared imagery ; Kernel ; Learning systems ; Machine learning ; Matching ; Measurement ; metric learning ; multimedia retrieval ; Neural networks ; Semantics ; Transformations (mathematics)</subject><ispartof>IEEE transactions on multimedia, 2017-06, Vol.19 (6), p.1234-1244</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-83455c8547b982e163c9ebdfb22757851ad7e9aed174470e0bd4b5698d8bd4553</citedby><cites>FETCH-LOGICAL-c291t-83455c8547b982e163c9ebdfb22757851ad7e9aed174470e0bd4b5698d8bd4553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7801952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7801952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liong, Venice Erin</creatorcontrib><creatorcontrib>Jiwen Lu</creatorcontrib><creatorcontrib>Yap-Peng Tan</creatorcontrib><creatorcontrib>Jie Zhou</creatorcontrib><title>Deep Coupled Metric Learning for Cross-Modal Matching</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we propose a new deep coupled metric learning (DCML) method for cross-modal matching, which aims to match samples captured from two different modalities (e.g., texts versus images, visible versus near infrared images). Unlike existing cross-modal matching methods which learn a linear common space to reduce the modality gap, our DCML designs two feedforward neural networks which learn two sets of hierarchical nonlinear transformations (one set for each modality) to nonlinearly map samples from different modalities into a shared latent feature subspace, under which the intraclass variation is minimized and the interclass variation is maximized, and the difference of each data pair captured from two modalities of the same class is minimized, respectively. Experimental results on four different cross-modal matching datasets validate the efficacy of the proposed approach.</description><subject>Artificial neural networks</subject><subject>Correlation</subject><subject>Coupled learning</subject><subject>cross-modal matching</subject><subject>deep model</subject><subject>Infrared imagery</subject><subject>Kernel</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Measurement</subject><subject>metric learning</subject><subject>multimedia retrieval</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Transformations (mathematics)</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1PwzAQxS0EEqWwI7FEYk65c-zYHlGggNSIpcyWE18gVWiCkwz897hqxXRPuvfu48fYLcIKEczDtixXHDBf8VzkqOGMLdAITAGUOo9ackgNR7hkV-O4A0AhQS2YfCIakqKfh458UtIU2jrZkAv7dv-ZNH1IitCPY1r23nVJ6ab6Kzau2UXjupFuTnXJPtbP2-I13by_vBWPm7TmBqdUZ0LKWkuhKqM5YZ7VhirfVJwrqbRE5xUZRx6VEAoIKi8qmRvtdVRSZkt2f5w7hP5npnGyu34O-7jSookvGJQijy44uurDqYEaO4T224Vfi2APcGyEYw9w7AlOjNwdIy0R_duVBjSSZ3-vYl3I</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Liong, Venice Erin</creator><creator>Jiwen Lu</creator><creator>Yap-Peng Tan</creator><creator>Jie Zhou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170601</creationdate><title>Deep Coupled Metric Learning for Cross-Modal Matching</title><author>Liong, Venice Erin ; Jiwen Lu ; Yap-Peng Tan ; Jie Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-83455c8547b982e163c9ebdfb22757851ad7e9aed174470e0bd4b5698d8bd4553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Correlation</topic><topic>Coupled learning</topic><topic>cross-modal matching</topic><topic>deep model</topic><topic>Infrared imagery</topic><topic>Kernel</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Measurement</topic><topic>metric learning</topic><topic>multimedia retrieval</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liong, Venice Erin</creatorcontrib><creatorcontrib>Jiwen Lu</creatorcontrib><creatorcontrib>Yap-Peng Tan</creatorcontrib><creatorcontrib>Jie Zhou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liong, Venice Erin</au><au>Jiwen Lu</au><au>Yap-Peng Tan</au><au>Jie Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Coupled Metric Learning for Cross-Modal Matching</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>19</volume><issue>6</issue><spage>1234</spage><epage>1244</epage><pages>1234-1244</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we propose a new deep coupled metric learning (DCML) method for cross-modal matching, which aims to match samples captured from two different modalities (e.g., texts versus images, visible versus near infrared images). Unlike existing cross-modal matching methods which learn a linear common space to reduce the modality gap, our DCML designs two feedforward neural networks which learn two sets of hierarchical nonlinear transformations (one set for each modality) to nonlinearly map samples from different modalities into a shared latent feature subspace, under which the intraclass variation is minimized and the interclass variation is maximized, and the difference of each data pair captured from two modalities of the same class is minimized, respectively. Experimental results on four different cross-modal matching datasets validate the efficacy of the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2016.2646180</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2017-06, Vol.19 (6), p.1234-1244
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_7801952
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Correlation
Coupled learning
cross-modal matching
deep model
Infrared imagery
Kernel
Learning systems
Machine learning
Matching
Measurement
metric learning
multimedia retrieval
Neural networks
Semantics
Transformations (mathematics)
title Deep Coupled Metric Learning for Cross-Modal Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T10%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Coupled%20Metric%20Learning%20for%20Cross-Modal%20Matching&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Liong,%20Venice%20Erin&rft.date=2017-06-01&rft.volume=19&rft.issue=6&rft.spage=1234&rft.epage=1244&rft.pages=1234-1244&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2016.2646180&rft_dat=%3Cproquest_RIE%3E1901491546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901491546&rft_id=info:pmid/&rft_ieee_id=7801952&rfr_iscdi=true