Satisficing in Multi-Armed Bandit Problems
Satisficing is a relaxation of maximizing and allows for less risky decision making in the face of uncertainty. We propose two sets of satisficing objectives for the multi-armed bandit problem, where the objective is to achieve reward-based decision-making performance above a given threshold. We sho...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2017-08, Vol.62 (8), p.3788-3803 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3803 |
---|---|
container_issue | 8 |
container_start_page | 3788 |
container_title | IEEE transactions on automatic control |
container_volume | 62 |
creator | Reverdy, Paul Srivastava, Vaibhav Leonard, Naomi Ehrich |
description | Satisficing is a relaxation of maximizing and allows for less risky decision making in the face of uncertainty. We propose two sets of satisficing objectives for the multi-armed bandit problem, where the objective is to achieve reward-based decision-making performance above a given threshold. We show that these new problems are equivalent to various standard multi-armed bandit problems with maximizing objectives and use the equivalence to find bounds on performance. The different objectives can result in qualitatively different behavior; for example, agents explore their options continually in one case and only a finite number of times in another. For the case of Gaussian rewards we show an additional equivalence between the two sets of satisficing objectives that allows algorithms developed for one set to be applied to the other. We then develop variants of the Upper Credible Limit (UCL) algorithm that solve the problems with satisficing objectives and show that these modified UCL algorithms achieve efficient satisficing performance. |
doi_str_mv | 10.1109/TAC.2016.2644380 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7795183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7795183</ieee_id><sourcerecordid>10_1109_TAC_2016_2644380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-393d46b938eed41681b48b60a7e32b0d1b508d129a0f93deead4c9db80ed1d903</originalsourceid><addsrcrecordid>eNo9j0FLxDAUhIMoWFfvgpeehdb3kqZNjrW4KqwouJ5D0rxKpO1KUw_-e7vs4mkY-GbgY-waIUcEfbetm5wDljkvi0IoOGEJSqkyLrk4ZQkAqkxzVZ6zixi_lrpgmLDbdzuH2IU2jJ9pGNOXn34OWT0N5NN7O_owp2_TzvU0xEt21tk-0tUxV-xj_bBtnrLN6-NzU2-yVoCcM6GFL0qnhSLyBZYKXaFcCbYiwR14dBKUR64tdAtKZH3Rau8UkEevQawYHH7baRfjRJ35nsJgp1-DYPauZnE1e1dzdF0mN4dJIKJ_vKq0RCXEH60mTt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Satisficing in Multi-Armed Bandit Problems</title><source>IEEE Electronic Library (IEL)</source><creator>Reverdy, Paul ; Srivastava, Vaibhav ; Leonard, Naomi Ehrich</creator><creatorcontrib>Reverdy, Paul ; Srivastava, Vaibhav ; Leonard, Naomi Ehrich</creatorcontrib><description>Satisficing is a relaxation of maximizing and allows for less risky decision making in the face of uncertainty. We propose two sets of satisficing objectives for the multi-armed bandit problem, where the objective is to achieve reward-based decision-making performance above a given threshold. We show that these new problems are equivalent to various standard multi-armed bandit problems with maximizing objectives and use the equivalence to find bounds on performance. The different objectives can result in qualitatively different behavior; for example, agents explore their options continually in one case and only a finite number of times in another. For the case of Gaussian rewards we show an additional equivalence between the two sets of satisficing objectives that allows algorithms developed for one set to be applied to the other. We then develop variants of the Upper Credible Limit (UCL) algorithm that solve the problems with satisficing objectives and show that these modified UCL algorithms achieve efficient satisficing performance.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2016.2644380</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Context ; Decision making ; Face ; Linear programming ; Multi-armed bandit ; Robustness ; upper credible limit (UCL)</subject><ispartof>IEEE transactions on automatic control, 2017-08, Vol.62 (8), p.3788-3803</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-393d46b938eed41681b48b60a7e32b0d1b508d129a0f93deead4c9db80ed1d903</citedby><cites>FETCH-LOGICAL-c305t-393d46b938eed41681b48b60a7e32b0d1b508d129a0f93deead4c9db80ed1d903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7795183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7795183$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reverdy, Paul</creatorcontrib><creatorcontrib>Srivastava, Vaibhav</creatorcontrib><creatorcontrib>Leonard, Naomi Ehrich</creatorcontrib><title>Satisficing in Multi-Armed Bandit Problems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>Satisficing is a relaxation of maximizing and allows for less risky decision making in the face of uncertainty. We propose two sets of satisficing objectives for the multi-armed bandit problem, where the objective is to achieve reward-based decision-making performance above a given threshold. We show that these new problems are equivalent to various standard multi-armed bandit problems with maximizing objectives and use the equivalence to find bounds on performance. The different objectives can result in qualitatively different behavior; for example, agents explore their options continually in one case and only a finite number of times in another. For the case of Gaussian rewards we show an additional equivalence between the two sets of satisficing objectives that allows algorithms developed for one set to be applied to the other. We then develop variants of the Upper Credible Limit (UCL) algorithm that solve the problems with satisficing objectives and show that these modified UCL algorithms achieve efficient satisficing performance.</description><subject>Algorithm design and analysis</subject><subject>Context</subject><subject>Decision making</subject><subject>Face</subject><subject>Linear programming</subject><subject>Multi-armed bandit</subject><subject>Robustness</subject><subject>upper credible limit (UCL)</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0FLxDAUhIMoWFfvgpeehdb3kqZNjrW4KqwouJ5D0rxKpO1KUw_-e7vs4mkY-GbgY-waIUcEfbetm5wDljkvi0IoOGEJSqkyLrk4ZQkAqkxzVZ6zixi_lrpgmLDbdzuH2IU2jJ9pGNOXn34OWT0N5NN7O_owp2_TzvU0xEt21tk-0tUxV-xj_bBtnrLN6-NzU2-yVoCcM6GFL0qnhSLyBZYKXaFcCbYiwR14dBKUR64tdAtKZH3Rau8UkEevQawYHH7baRfjRJ35nsJgp1-DYPauZnE1e1dzdF0mN4dJIKJ_vKq0RCXEH60mTt0</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Reverdy, Paul</creator><creator>Srivastava, Vaibhav</creator><creator>Leonard, Naomi Ehrich</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201708</creationdate><title>Satisficing in Multi-Armed Bandit Problems</title><author>Reverdy, Paul ; Srivastava, Vaibhav ; Leonard, Naomi Ehrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-393d46b938eed41681b48b60a7e32b0d1b508d129a0f93deead4c9db80ed1d903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithm design and analysis</topic><topic>Context</topic><topic>Decision making</topic><topic>Face</topic><topic>Linear programming</topic><topic>Multi-armed bandit</topic><topic>Robustness</topic><topic>upper credible limit (UCL)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reverdy, Paul</creatorcontrib><creatorcontrib>Srivastava, Vaibhav</creatorcontrib><creatorcontrib>Leonard, Naomi Ehrich</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reverdy, Paul</au><au>Srivastava, Vaibhav</au><au>Leonard, Naomi Ehrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satisficing in Multi-Armed Bandit Problems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2017-08</date><risdate>2017</risdate><volume>62</volume><issue>8</issue><spage>3788</spage><epage>3803</epage><pages>3788-3803</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>Satisficing is a relaxation of maximizing and allows for less risky decision making in the face of uncertainty. We propose two sets of satisficing objectives for the multi-armed bandit problem, where the objective is to achieve reward-based decision-making performance above a given threshold. We show that these new problems are equivalent to various standard multi-armed bandit problems with maximizing objectives and use the equivalence to find bounds on performance. The different objectives can result in qualitatively different behavior; for example, agents explore their options continually in one case and only a finite number of times in another. For the case of Gaussian rewards we show an additional equivalence between the two sets of satisficing objectives that allows algorithms developed for one set to be applied to the other. We then develop variants of the Upper Credible Limit (UCL) algorithm that solve the problems with satisficing objectives and show that these modified UCL algorithms achieve efficient satisficing performance.</abstract><pub>IEEE</pub><doi>10.1109/TAC.2016.2644380</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2017-08, Vol.62 (8), p.3788-3803 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_7795183 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Context Decision making Face Linear programming Multi-armed bandit Robustness upper credible limit (UCL) |
title | Satisficing in Multi-Armed Bandit Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satisficing%20in%20Multi-Armed%20Bandit%20Problems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Reverdy,%20Paul&rft.date=2017-08&rft.volume=62&rft.issue=8&rft.spage=3788&rft.epage=3803&rft.pages=3788-3803&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2016.2644380&rft_dat=%3Ccrossref_RIE%3E10_1109_TAC_2016_2644380%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7795183&rfr_iscdi=true |