Influence of Fatigue and Bending Strain on Critical Currents of Niobium Superconducting Flexible Cables Containing Ti and Cu Interfacial Layers

Niobium is a viable material for thin-film superconducting flexible microwave cables. To aid in the design of superconducting flexible cables using Nb, it is important to evaluate not only the superconductor electrical performance, but also mechanical reliability performance since these cables shoul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2017-06, Vol.27 (4), p.1-5
Hauptverfasser: Simin Zou, Rujun Bai, Hernandez, George A., Gupta, Vaibhav, Yang Cao, Sellers, John A., Ellis, Charles D., Tuckerman, David B., Hamilton, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 27
creator Simin Zou
Rujun Bai
Hernandez, George A.
Gupta, Vaibhav
Yang Cao
Sellers, John A.
Ellis, Charles D.
Tuckerman, David B.
Hamilton, Michael C.
description Niobium is a viable material for thin-film superconducting flexible microwave cables. To aid in the design of superconducting flexible cables using Nb, it is important to evaluate not only the superconductor electrical performance, but also mechanical reliability performance since these cables should be reasonably robust when flexed. In this paper, we performed fatigue and bending tests on Nb-only and Ti/Nb/Cu multilayer signal lines on flexible Kapton substrates and measured the change in critical current (I c ) of these wires. From the fatigue tests, I c , degradation of Nb-only cables occurred at a lower number of cycles than the Ti/Nb/Cu cables. After 250 fatigue cycles, Ti/Nb/Cu wires with the thickest Ti adhesion layer and Cu capping layer exhibited the lowest I c degradation of ~1.2% and 0% in tensile and compressive cases, respectively. From bending tests, where the sample was held in an intentionally curved configuration during testing, I c degradation of the Nb-only cables was more severe than that of the Ti/Nb/Cu cables during tensile bending and the I c of Ti/Nb/Cu cables was minimally affected during compressive bending. These results demonstrate that a Ti adhesion layer and Cu capping layer provide reliability enhancement for superconducting Nb flex cables fabricated on Kapton.
doi_str_mv 10.1109/TASC.2016.2641239
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7786830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7786830</ieee_id><sourcerecordid>10_1109_TASC_2016_2641239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-2ff9d8ba3b1f3402ba7acaa892864f80c50775b4477c9695ddf4fa7cb80f0b3f3</originalsourceid><addsrcrecordid>eNo9kM9KAzEQh4MoWKsPIF7yAlvzd5M91mC1UPTQel6SbFIi22xJdsE-ha_srhYvMwMz32_gA-AeowXGqHrcLbdqQRAuF6RkmNDqAsww57IgHPPLcUYcF5IQeg1ucv5ECDPJ-Ax8r6NvBxetg52HK92H_eCgjg18crEJcQ-3fdIhwi5ClUIfrG6hGlJysc8T8hY6E4YD3A5Hl2wXm8H2E7Zq3VcwrYNKjzVD1cV-zJlWu_D7QA1wHXuXvLZhDN3ok0v5Flx53WZ3d-5z8LF63qnXYvP-slbLTWFJyfuCeF810mhqsKcMEaOFtlrLisiSeYksR0Jww5gQtior3jSeeS2skcgjQz2dA_yXa1OXc3K-PqZw0OlUY1RPRuvJaD0Zrc9GR-bhjwnOuf97IWQpKaI_yG100g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of Fatigue and Bending Strain on Critical Currents of Niobium Superconducting Flexible Cables Containing Ti and Cu Interfacial Layers</title><source>IEEE Electronic Library (IEL)</source><creator>Simin Zou ; Rujun Bai ; Hernandez, George A. ; Gupta, Vaibhav ; Yang Cao ; Sellers, John A. ; Ellis, Charles D. ; Tuckerman, David B. ; Hamilton, Michael C.</creator><creatorcontrib>Simin Zou ; Rujun Bai ; Hernandez, George A. ; Gupta, Vaibhav ; Yang Cao ; Sellers, John A. ; Ellis, Charles D. ; Tuckerman, David B. ; Hamilton, Michael C.</creatorcontrib><description>Niobium is a viable material for thin-film superconducting flexible microwave cables. To aid in the design of superconducting flexible cables using Nb, it is important to evaluate not only the superconductor electrical performance, but also mechanical reliability performance since these cables should be reasonably robust when flexed. In this paper, we performed fatigue and bending tests on Nb-only and Ti/Nb/Cu multilayer signal lines on flexible Kapton substrates and measured the change in critical current (I c ) of these wires. From the fatigue tests, I c , degradation of Nb-only cables occurred at a lower number of cycles than the Ti/Nb/Cu cables. After 250 fatigue cycles, Ti/Nb/Cu wires with the thickest Ti adhesion layer and Cu capping layer exhibited the lowest I c degradation of ~1.2% and 0% in tensile and compressive cases, respectively. From bending tests, where the sample was held in an intentionally curved configuration during testing, I c degradation of the Nb-only cables was more severe than that of the Ti/Nb/Cu cables during tensile bending and the I c of Ti/Nb/Cu cables was minimally affected during compressive bending. These results demonstrate that a Ti adhesion layer and Cu capping layer provide reliability enhancement for superconducting Nb flex cables fabricated on Kapton.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2016.2641239</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>bend ; critical current ; Critical current density (superconductivity) ; Fatigue ; flexible ; Niobium ; reliability ; Superconducting cables ; Superconducting integrated circuits ; Testing ; thin film</subject><ispartof>IEEE transactions on applied superconductivity, 2017-06, Vol.27 (4), p.1-5</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-2ff9d8ba3b1f3402ba7acaa892864f80c50775b4477c9695ddf4fa7cb80f0b3f3</citedby><cites>FETCH-LOGICAL-c265t-2ff9d8ba3b1f3402ba7acaa892864f80c50775b4477c9695ddf4fa7cb80f0b3f3</cites><orcidid>0000-0002-0917-298X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7786830$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7786830$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Simin Zou</creatorcontrib><creatorcontrib>Rujun Bai</creatorcontrib><creatorcontrib>Hernandez, George A.</creatorcontrib><creatorcontrib>Gupta, Vaibhav</creatorcontrib><creatorcontrib>Yang Cao</creatorcontrib><creatorcontrib>Sellers, John A.</creatorcontrib><creatorcontrib>Ellis, Charles D.</creatorcontrib><creatorcontrib>Tuckerman, David B.</creatorcontrib><creatorcontrib>Hamilton, Michael C.</creatorcontrib><title>Influence of Fatigue and Bending Strain on Critical Currents of Niobium Superconducting Flexible Cables Containing Ti and Cu Interfacial Layers</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Niobium is a viable material for thin-film superconducting flexible microwave cables. To aid in the design of superconducting flexible cables using Nb, it is important to evaluate not only the superconductor electrical performance, but also mechanical reliability performance since these cables should be reasonably robust when flexed. In this paper, we performed fatigue and bending tests on Nb-only and Ti/Nb/Cu multilayer signal lines on flexible Kapton substrates and measured the change in critical current (I c ) of these wires. From the fatigue tests, I c , degradation of Nb-only cables occurred at a lower number of cycles than the Ti/Nb/Cu cables. After 250 fatigue cycles, Ti/Nb/Cu wires with the thickest Ti adhesion layer and Cu capping layer exhibited the lowest I c degradation of ~1.2% and 0% in tensile and compressive cases, respectively. From bending tests, where the sample was held in an intentionally curved configuration during testing, I c degradation of the Nb-only cables was more severe than that of the Ti/Nb/Cu cables during tensile bending and the I c of Ti/Nb/Cu cables was minimally affected during compressive bending. These results demonstrate that a Ti adhesion layer and Cu capping layer provide reliability enhancement for superconducting Nb flex cables fabricated on Kapton.</description><subject>bend</subject><subject>critical current</subject><subject>Critical current density (superconductivity)</subject><subject>Fatigue</subject><subject>flexible</subject><subject>Niobium</subject><subject>reliability</subject><subject>Superconducting cables</subject><subject>Superconducting integrated circuits</subject><subject>Testing</subject><subject>thin film</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9KAzEQh4MoWKsPIF7yAlvzd5M91mC1UPTQel6SbFIi22xJdsE-ha_srhYvMwMz32_gA-AeowXGqHrcLbdqQRAuF6RkmNDqAsww57IgHPPLcUYcF5IQeg1ucv5ECDPJ-Ax8r6NvBxetg52HK92H_eCgjg18crEJcQ-3fdIhwi5ClUIfrG6hGlJysc8T8hY6E4YD3A5Hl2wXm8H2E7Zq3VcwrYNKjzVD1cV-zJlWu_D7QA1wHXuXvLZhDN3ok0v5Flx53WZ3d-5z8LF63qnXYvP-slbLTWFJyfuCeF810mhqsKcMEaOFtlrLisiSeYksR0Jww5gQtior3jSeeS2skcgjQz2dA_yXa1OXc3K-PqZw0OlUY1RPRuvJaD0Zrc9GR-bhjwnOuf97IWQpKaI_yG100g</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Simin Zou</creator><creator>Rujun Bai</creator><creator>Hernandez, George A.</creator><creator>Gupta, Vaibhav</creator><creator>Yang Cao</creator><creator>Sellers, John A.</creator><creator>Ellis, Charles D.</creator><creator>Tuckerman, David B.</creator><creator>Hamilton, Michael C.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0917-298X</orcidid></search><sort><creationdate>201706</creationdate><title>Influence of Fatigue and Bending Strain on Critical Currents of Niobium Superconducting Flexible Cables Containing Ti and Cu Interfacial Layers</title><author>Simin Zou ; Rujun Bai ; Hernandez, George A. ; Gupta, Vaibhav ; Yang Cao ; Sellers, John A. ; Ellis, Charles D. ; Tuckerman, David B. ; Hamilton, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-2ff9d8ba3b1f3402ba7acaa892864f80c50775b4477c9695ddf4fa7cb80f0b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>bend</topic><topic>critical current</topic><topic>Critical current density (superconductivity)</topic><topic>Fatigue</topic><topic>flexible</topic><topic>Niobium</topic><topic>reliability</topic><topic>Superconducting cables</topic><topic>Superconducting integrated circuits</topic><topic>Testing</topic><topic>thin film</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simin Zou</creatorcontrib><creatorcontrib>Rujun Bai</creatorcontrib><creatorcontrib>Hernandez, George A.</creatorcontrib><creatorcontrib>Gupta, Vaibhav</creatorcontrib><creatorcontrib>Yang Cao</creatorcontrib><creatorcontrib>Sellers, John A.</creatorcontrib><creatorcontrib>Ellis, Charles D.</creatorcontrib><creatorcontrib>Tuckerman, David B.</creatorcontrib><creatorcontrib>Hamilton, Michael C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Simin Zou</au><au>Rujun Bai</au><au>Hernandez, George A.</au><au>Gupta, Vaibhav</au><au>Yang Cao</au><au>Sellers, John A.</au><au>Ellis, Charles D.</au><au>Tuckerman, David B.</au><au>Hamilton, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Fatigue and Bending Strain on Critical Currents of Niobium Superconducting Flexible Cables Containing Ti and Cu Interfacial Layers</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2017-06</date><risdate>2017</risdate><volume>27</volume><issue>4</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Niobium is a viable material for thin-film superconducting flexible microwave cables. To aid in the design of superconducting flexible cables using Nb, it is important to evaluate not only the superconductor electrical performance, but also mechanical reliability performance since these cables should be reasonably robust when flexed. In this paper, we performed fatigue and bending tests on Nb-only and Ti/Nb/Cu multilayer signal lines on flexible Kapton substrates and measured the change in critical current (I c ) of these wires. From the fatigue tests, I c , degradation of Nb-only cables occurred at a lower number of cycles than the Ti/Nb/Cu cables. After 250 fatigue cycles, Ti/Nb/Cu wires with the thickest Ti adhesion layer and Cu capping layer exhibited the lowest I c degradation of ~1.2% and 0% in tensile and compressive cases, respectively. From bending tests, where the sample was held in an intentionally curved configuration during testing, I c degradation of the Nb-only cables was more severe than that of the Ti/Nb/Cu cables during tensile bending and the I c of Ti/Nb/Cu cables was minimally affected during compressive bending. These results demonstrate that a Ti adhesion layer and Cu capping layer provide reliability enhancement for superconducting Nb flex cables fabricated on Kapton.</abstract><pub>IEEE</pub><doi>10.1109/TASC.2016.2641239</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-0917-298X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2017-06, Vol.27 (4), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_7786830
source IEEE Electronic Library (IEL)
subjects bend
critical current
Critical current density (superconductivity)
Fatigue
flexible
Niobium
reliability
Superconducting cables
Superconducting integrated circuits
Testing
thin film
title Influence of Fatigue and Bending Strain on Critical Currents of Niobium Superconducting Flexible Cables Containing Ti and Cu Interfacial Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A32%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Fatigue%20and%20Bending%20Strain%20on%20Critical%20Currents%20of%20Niobium%20Superconducting%20Flexible%20Cables%20Containing%20Ti%20and%20Cu%20Interfacial%20Layers&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Simin%20Zou&rft.date=2017-06&rft.volume=27&rft.issue=4&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2016.2641239&rft_dat=%3Ccrossref_RIE%3E10_1109_TASC_2016_2641239%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7786830&rfr_iscdi=true