Continuous Time Series Models for Modeling Daily Electricity Prices
This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily pr...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2016-08, Vol.14 (8), p.3630-3635 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng ; spa |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3635 |
---|---|
container_issue | 8 |
container_start_page | 3630 |
container_title | Revista IEEE América Latina |
container_volume | 14 |
creator | Velasquez, Juan David Franco, Carlos Jaime |
description | This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily prices; how have been modeled the stochastic component using mean-reversion models; and how have been modeled the stochastic components using regime-switching models. The review leads to the conclusion that there is no agreement on which are the better approaches, and the analized papers do not discuss how the selected techniques for extracting the deterministic components affect the results of the modeling of the stochastic component. These are important question that must be answered in future research. |
doi_str_mv | 10.1109/TLA.2016.7786343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7786343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7786343</ieee_id><sourcerecordid>1850253167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-dabdd634f704064bd9a3b07f74d77a97a8a75a791c050328b555cddcff6b1bb23</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMouK7eBS8Bz10nTdOkx6V-woqC6znkU7J02zVpD_vf26WreHoP5r2Z4YfQNYEFIVDdrVfLRQ6kXHAuSlrQEzQjrBAZVFV--s-fo4uUNgBUlILOUF13bR_aoRsSXoetwx8uBpfwa2ddk7Dv4mRD-4XvVWj2-KFxpo_BhH6P30d16RKdedUkd3XUOfp8fFjXz9nq7emlXq4yQ3jRZ1Zpa8fXPIcCykLbSlEN3PPCcq4qroTiTPGKGGBAc6EZY8Za432pidY5naPbae8udt-DS73cdENsx5OSCAY5o6TkYwqmlIldStF5uYthq-JeEpAHVHJEJQ-o5BHVWLmZKsE59xf_nf4AT_Rkdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850253167</pqid></control><display><type>article</type><title>Continuous Time Series Models for Modeling Daily Electricity Prices</title><source>IEEE Electronic Library (IEL)</source><creator>Velasquez, Juan David ; Franco, Carlos Jaime</creator><creatorcontrib>Velasquez, Juan David ; Franco, Carlos Jaime</creatorcontrib><description>This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily prices; how have been modeled the stochastic component using mean-reversion models; and how have been modeled the stochastic components using regime-switching models. The review leads to the conclusion that there is no agreement on which are the better approaches, and the analized papers do not discuss how the selected techniques for extracting the deterministic components affect the results of the modeling of the stochastic component. These are important question that must be answered in future research.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2016.7786343</identifier><language>eng ; spa</language><publisher>Los Alamitos: IEEE</publisher><subject>Continuous time systems ; Electricity markets ; electricity prices ; Electricity pricing ; Electricity supply industry ; IEEE transactions ; jump diffusion ; mean-reversion model ; Media ; regime-switching model ; Silicon ; Stochastic models ; Stochastic processes ; Time series ; Time series analysis</subject><ispartof>Revista IEEE América Latina, 2016-08, Vol.14 (8), p.3630-3635</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7786343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7786343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Velasquez, Juan David</creatorcontrib><creatorcontrib>Franco, Carlos Jaime</creatorcontrib><title>Continuous Time Series Models for Modeling Daily Electricity Prices</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily prices; how have been modeled the stochastic component using mean-reversion models; and how have been modeled the stochastic components using regime-switching models. The review leads to the conclusion that there is no agreement on which are the better approaches, and the analized papers do not discuss how the selected techniques for extracting the deterministic components affect the results of the modeling of the stochastic component. These are important question that must be answered in future research.</description><subject>Continuous time systems</subject><subject>Electricity markets</subject><subject>electricity prices</subject><subject>Electricity pricing</subject><subject>Electricity supply industry</subject><subject>IEEE transactions</subject><subject>jump diffusion</subject><subject>mean-reversion model</subject><subject>Media</subject><subject>regime-switching model</subject><subject>Silicon</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LxDAQxYMouK7eBS8Bz10nTdOkx6V-woqC6znkU7J02zVpD_vf26WreHoP5r2Z4YfQNYEFIVDdrVfLRQ6kXHAuSlrQEzQjrBAZVFV--s-fo4uUNgBUlILOUF13bR_aoRsSXoetwx8uBpfwa2ddk7Dv4mRD-4XvVWj2-KFxpo_BhH6P30d16RKdedUkd3XUOfp8fFjXz9nq7emlXq4yQ3jRZ1Zpa8fXPIcCykLbSlEN3PPCcq4qroTiTPGKGGBAc6EZY8Za432pidY5naPbae8udt-DS73cdENsx5OSCAY5o6TkYwqmlIldStF5uYthq-JeEpAHVHJEJQ-o5BHVWLmZKsE59xf_nf4AT_Rkdw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Velasquez, Juan David</creator><creator>Franco, Carlos Jaime</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>Continuous Time Series Models for Modeling Daily Electricity Prices</title><author>Velasquez, Juan David ; Franco, Carlos Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-dabdd634f704064bd9a3b07f74d77a97a8a75a791c050328b555cddcff6b1bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2016</creationdate><topic>Continuous time systems</topic><topic>Electricity markets</topic><topic>electricity prices</topic><topic>Electricity pricing</topic><topic>Electricity supply industry</topic><topic>IEEE transactions</topic><topic>jump diffusion</topic><topic>mean-reversion model</topic><topic>Media</topic><topic>regime-switching model</topic><topic>Silicon</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Velasquez, Juan David</creatorcontrib><creatorcontrib>Franco, Carlos Jaime</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Velasquez, Juan David</au><au>Franco, Carlos Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Time Series Models for Modeling Daily Electricity Prices</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>14</volume><issue>8</issue><spage>3630</spage><epage>3635</epage><pages>3630-3635</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily prices; how have been modeled the stochastic component using mean-reversion models; and how have been modeled the stochastic components using regime-switching models. The review leads to the conclusion that there is no agreement on which are the better approaches, and the analized papers do not discuss how the selected techniques for extracting the deterministic components affect the results of the modeling of the stochastic component. These are important question that must be answered in future research.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2016.7786343</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2016-08, Vol.14 (8), p.3630-3635 |
issn | 1548-0992 1548-0992 |
language | eng ; spa |
recordid | cdi_ieee_primary_7786343 |
source | IEEE Electronic Library (IEL) |
subjects | Continuous time systems Electricity markets electricity prices Electricity pricing Electricity supply industry IEEE transactions jump diffusion mean-reversion model Media regime-switching model Silicon Stochastic models Stochastic processes Time series Time series analysis |
title | Continuous Time Series Models for Modeling Daily Electricity Prices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Time%20Series%20Models%20for%20Modeling%20Daily%20Electricity%20Prices&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Velasquez,%20Juan%20David&rft.date=2016-08-01&rft.volume=14&rft.issue=8&rft.spage=3630&rft.epage=3635&rft.pages=3630-3635&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2016.7786343&rft_dat=%3Cproquest_RIE%3E1850253167%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850253167&rft_id=info:pmid/&rft_ieee_id=7786343&rfr_iscdi=true |