Continuous Time Series Models for Modeling Daily Electricity Prices

This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2016-08, Vol.14 (8), p.3630-3635
Hauptverfasser: Velasquez, Juan David, Franco, Carlos Jaime
Format: Artikel
Sprache:eng ; spa
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3635
container_issue 8
container_start_page 3630
container_title Revista IEEE América Latina
container_volume 14
creator Velasquez, Juan David
Franco, Carlos Jaime
description This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily prices; how have been modeled the stochastic component using mean-reversion models; and how have been modeled the stochastic components using regime-switching models. The review leads to the conclusion that there is no agreement on which are the better approaches, and the analized papers do not discuss how the selected techniques for extracting the deterministic components affect the results of the modeling of the stochastic component. These are important question that must be answered in future research.
doi_str_mv 10.1109/TLA.2016.7786343
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7786343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7786343</ieee_id><sourcerecordid>1850253167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-dabdd634f704064bd9a3b07f74d77a97a8a75a791c050328b555cddcff6b1bb23</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMouK7eBS8Bz10nTdOkx6V-woqC6znkU7J02zVpD_vf26WreHoP5r2Z4YfQNYEFIVDdrVfLRQ6kXHAuSlrQEzQjrBAZVFV--s-fo4uUNgBUlILOUF13bR_aoRsSXoetwx8uBpfwa2ddk7Dv4mRD-4XvVWj2-KFxpo_BhH6P30d16RKdedUkd3XUOfp8fFjXz9nq7emlXq4yQ3jRZ1Zpa8fXPIcCykLbSlEN3PPCcq4qroTiTPGKGGBAc6EZY8Za432pidY5naPbae8udt-DS73cdENsx5OSCAY5o6TkYwqmlIldStF5uYthq-JeEpAHVHJEJQ-o5BHVWLmZKsE59xf_nf4AT_Rkdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850253167</pqid></control><display><type>article</type><title>Continuous Time Series Models for Modeling Daily Electricity Prices</title><source>IEEE Electronic Library (IEL)</source><creator>Velasquez, Juan David ; Franco, Carlos Jaime</creator><creatorcontrib>Velasquez, Juan David ; Franco, Carlos Jaime</creatorcontrib><description>This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily prices; how have been modeled the stochastic component using mean-reversion models; and how have been modeled the stochastic components using regime-switching models. The review leads to the conclusion that there is no agreement on which are the better approaches, and the analized papers do not discuss how the selected techniques for extracting the deterministic components affect the results of the modeling of the stochastic component. These are important question that must be answered in future research.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2016.7786343</identifier><language>eng ; spa</language><publisher>Los Alamitos: IEEE</publisher><subject>Continuous time systems ; Electricity markets ; electricity prices ; Electricity pricing ; Electricity supply industry ; IEEE transactions ; jump diffusion ; mean-reversion model ; Media ; regime-switching model ; Silicon ; Stochastic models ; Stochastic processes ; Time series ; Time series analysis</subject><ispartof>Revista IEEE América Latina, 2016-08, Vol.14 (8), p.3630-3635</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7786343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7786343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Velasquez, Juan David</creatorcontrib><creatorcontrib>Franco, Carlos Jaime</creatorcontrib><title>Continuous Time Series Models for Modeling Daily Electricity Prices</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily prices; how have been modeled the stochastic component using mean-reversion models; and how have been modeled the stochastic components using regime-switching models. The review leads to the conclusion that there is no agreement on which are the better approaches, and the analized papers do not discuss how the selected techniques for extracting the deterministic components affect the results of the modeling of the stochastic component. These are important question that must be answered in future research.</description><subject>Continuous time systems</subject><subject>Electricity markets</subject><subject>electricity prices</subject><subject>Electricity pricing</subject><subject>Electricity supply industry</subject><subject>IEEE transactions</subject><subject>jump diffusion</subject><subject>mean-reversion model</subject><subject>Media</subject><subject>regime-switching model</subject><subject>Silicon</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LxDAQxYMouK7eBS8Bz10nTdOkx6V-woqC6znkU7J02zVpD_vf26WreHoP5r2Z4YfQNYEFIVDdrVfLRQ6kXHAuSlrQEzQjrBAZVFV--s-fo4uUNgBUlILOUF13bR_aoRsSXoetwx8uBpfwa2ddk7Dv4mRD-4XvVWj2-KFxpo_BhH6P30d16RKdedUkd3XUOfp8fFjXz9nq7emlXq4yQ3jRZ1Zpa8fXPIcCykLbSlEN3PPCcq4qroTiTPGKGGBAc6EZY8Za432pidY5naPbae8udt-DS73cdENsx5OSCAY5o6TkYwqmlIldStF5uYthq-JeEpAHVHJEJQ-o5BHVWLmZKsE59xf_nf4AT_Rkdw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Velasquez, Juan David</creator><creator>Franco, Carlos Jaime</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>Continuous Time Series Models for Modeling Daily Electricity Prices</title><author>Velasquez, Juan David ; Franco, Carlos Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-dabdd634f704064bd9a3b07f74d77a97a8a75a791c050328b555cddcff6b1bb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2016</creationdate><topic>Continuous time systems</topic><topic>Electricity markets</topic><topic>electricity prices</topic><topic>Electricity pricing</topic><topic>Electricity supply industry</topic><topic>IEEE transactions</topic><topic>jump diffusion</topic><topic>mean-reversion model</topic><topic>Media</topic><topic>regime-switching model</topic><topic>Silicon</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Velasquez, Juan David</creatorcontrib><creatorcontrib>Franco, Carlos Jaime</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Velasquez, Juan David</au><au>Franco, Carlos Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Time Series Models for Modeling Daily Electricity Prices</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>14</volume><issue>8</issue><spage>3630</spage><epage>3635</epage><pages>3630-3635</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This paper aims to provide a unified frame for discussing, summarizing and organizing the main advances in electricity price modeling using the continuous time series modeling approach. This work is organized in three topics: how have been extracted the deterministic patterns present in the daily prices; how have been modeled the stochastic component using mean-reversion models; and how have been modeled the stochastic components using regime-switching models. The review leads to the conclusion that there is no agreement on which are the better approaches, and the analized papers do not discuss how the selected techniques for extracting the deterministic components affect the results of the modeling of the stochastic component. These are important question that must be answered in future research.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2016.7786343</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2016-08, Vol.14 (8), p.3630-3635
issn 1548-0992
1548-0992
language eng ; spa
recordid cdi_ieee_primary_7786343
source IEEE Electronic Library (IEL)
subjects Continuous time systems
Electricity markets
electricity prices
Electricity pricing
Electricity supply industry
IEEE transactions
jump diffusion
mean-reversion model
Media
regime-switching model
Silicon
Stochastic models
Stochastic processes
Time series
Time series analysis
title Continuous Time Series Models for Modeling Daily Electricity Prices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A06%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Time%20Series%20Models%20for%20Modeling%20Daily%20Electricity%20Prices&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Velasquez,%20Juan%20David&rft.date=2016-08-01&rft.volume=14&rft.issue=8&rft.spage=3630&rft.epage=3635&rft.pages=3630-3635&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2016.7786343&rft_dat=%3Cproquest_RIE%3E1850253167%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850253167&rft_id=info:pmid/&rft_ieee_id=7786343&rfr_iscdi=true