Reactive Obstacle Avoidance for Highly Maneuverable Vehicles Based on a Two-Stage Optical Flow Clustering

This paper proposes a reactive obstacle avoidance approach based solely on image data from a monocular camera stream. By clustering and analyzing the optical flow, this approach is able to identify potential collisions with dynamic obstacles. Epipolar geometry is exploited to derive velocity command...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2017-08, Vol.18 (8), p.2137-2152
Hauptverfasser: Schaub, Alexander, Baumgartner, Daniel, Burschka, Darius
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2152
container_issue 8
container_start_page 2137
container_title IEEE transactions on intelligent transportation systems
container_volume 18
creator Schaub, Alexander
Baumgartner, Daniel
Burschka, Darius
description This paper proposes a reactive obstacle avoidance approach based solely on image data from a monocular camera stream. By clustering and analyzing the optical flow, this approach is able to identify potential collisions with dynamic obstacles. Epipolar geometry is exploited to derive velocity commands that ensure a collision-free path for a highly maneuverable autonomous vehicle via a real-time optimizer. First, the underlying image processing and optimization principles are explained in detail, before simulation results show the general feasibility of the approach. Finally, real-world tests with the ROboMObil, the German Aerospace Center's robotic electric vehicle, are provided to demonstrate its applicability.
doi_str_mv 10.1109/TITS.2016.2633292
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7782362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7782362</ieee_id><sourcerecordid>1926797344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-55037c40538e52c96f5cd077092c1906b984ef7503673f39c637c9b34f227eeb3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwJeN2Zj6ZpLudwbjAZuOptSbPTLaM2M2k39u9N2fDqHA7P-x54ouiR4BEhWL7k83w1opikI5oyRiW9igaE8yzG4Xbd7zSJJeb4NrrzfheuCSdkEJlPULo1B0DL0rdK14DGB2vWqtGAKuvQzGy29Ql9qAa6AzhVBuIbtiaQHr0qD2tkG6RQfrTxqlWbULRvjVY1mtb2iCZ151twptncRzeVqj08XOYw-pq-5ZNZvFi-zyfjRaypZG3MOWZCJ5izDDjVMq24XmMhsKSaSJyWMkugEoFKBauY1GnAZcmSilIBULJh9Hzu3Tv724Fvi53tXBNeFkTSVEjBkiRQ5ExpZ713UBV7Z36UOxUEF73Rojda9EaLi9GQeTpnDAD880JklKWU_QFXZXD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926797344</pqid></control><display><type>article</type><title>Reactive Obstacle Avoidance for Highly Maneuverable Vehicles Based on a Two-Stage Optical Flow Clustering</title><source>IEEE Electronic Library (IEL)</source><creator>Schaub, Alexander ; Baumgartner, Daniel ; Burschka, Darius</creator><creatorcontrib>Schaub, Alexander ; Baumgartner, Daniel ; Burschka, Darius</creatorcontrib><description>This paper proposes a reactive obstacle avoidance approach based solely on image data from a monocular camera stream. By clustering and analyzing the optical flow, this approach is able to identify potential collisions with dynamic obstacles. Epipolar geometry is exploited to derive velocity commands that ensure a collision-free path for a highly maneuverable autonomous vehicle via a real-time optimizer. First, the underlying image processing and optimization principles are explained in detail, before simulation results show the general feasibility of the approach. Finally, real-world tests with the ROboMObil, the German Aerospace Center's robotic electric vehicle, are provided to demonstrate its applicability.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2016.2633292</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive optics ; Biomedical optical imaging ; Cameras ; Clustering ; Collision avoidance ; Collision dynamics ; Commands ; Computer terminals ; Dynamics ; Image processing ; intelligent vehicles ; Obstacle avoidance ; optical feedback ; Optical flow (image analysis) ; Optical imaging ; Optical sensors ; optimization</subject><ispartof>IEEE transactions on intelligent transportation systems, 2017-08, Vol.18 (8), p.2137-2152</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-55037c40538e52c96f5cd077092c1906b984ef7503673f39c637c9b34f227eeb3</citedby><cites>FETCH-LOGICAL-c293t-55037c40538e52c96f5cd077092c1906b984ef7503673f39c637c9b34f227eeb3</cites><orcidid>0000-0002-4824-4552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7782362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7782362$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schaub, Alexander</creatorcontrib><creatorcontrib>Baumgartner, Daniel</creatorcontrib><creatorcontrib>Burschka, Darius</creatorcontrib><title>Reactive Obstacle Avoidance for Highly Maneuverable Vehicles Based on a Two-Stage Optical Flow Clustering</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes a reactive obstacle avoidance approach based solely on image data from a monocular camera stream. By clustering and analyzing the optical flow, this approach is able to identify potential collisions with dynamic obstacles. Epipolar geometry is exploited to derive velocity commands that ensure a collision-free path for a highly maneuverable autonomous vehicle via a real-time optimizer. First, the underlying image processing and optimization principles are explained in detail, before simulation results show the general feasibility of the approach. Finally, real-world tests with the ROboMObil, the German Aerospace Center's robotic electric vehicle, are provided to demonstrate its applicability.</description><subject>Adaptive optics</subject><subject>Biomedical optical imaging</subject><subject>Cameras</subject><subject>Clustering</subject><subject>Collision avoidance</subject><subject>Collision dynamics</subject><subject>Commands</subject><subject>Computer terminals</subject><subject>Dynamics</subject><subject>Image processing</subject><subject>intelligent vehicles</subject><subject>Obstacle avoidance</subject><subject>optical feedback</subject><subject>Optical flow (image analysis)</subject><subject>Optical imaging</subject><subject>Optical sensors</subject><subject>optimization</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKc_QLwJeN2Zj6ZpLudwbjAZuOptSbPTLaM2M2k39u9N2fDqHA7P-x54ouiR4BEhWL7k83w1opikI5oyRiW9igaE8yzG4Xbd7zSJJeb4NrrzfheuCSdkEJlPULo1B0DL0rdK14DGB2vWqtGAKuvQzGy29Ql9qAa6AzhVBuIbtiaQHr0qD2tkG6RQfrTxqlWbULRvjVY1mtb2iCZ151twptncRzeVqj08XOYw-pq-5ZNZvFi-zyfjRaypZG3MOWZCJ5izDDjVMq24XmMhsKSaSJyWMkugEoFKBauY1GnAZcmSilIBULJh9Hzu3Tv724Fvi53tXBNeFkTSVEjBkiRQ5ExpZ713UBV7Z36UOxUEF73Rojda9EaLi9GQeTpnDAD880JklKWU_QFXZXD8</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Schaub, Alexander</creator><creator>Baumgartner, Daniel</creator><creator>Burschka, Darius</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4824-4552</orcidid></search><sort><creationdate>20170801</creationdate><title>Reactive Obstacle Avoidance for Highly Maneuverable Vehicles Based on a Two-Stage Optical Flow Clustering</title><author>Schaub, Alexander ; Baumgartner, Daniel ; Burschka, Darius</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-55037c40538e52c96f5cd077092c1906b984ef7503673f39c637c9b34f227eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive optics</topic><topic>Biomedical optical imaging</topic><topic>Cameras</topic><topic>Clustering</topic><topic>Collision avoidance</topic><topic>Collision dynamics</topic><topic>Commands</topic><topic>Computer terminals</topic><topic>Dynamics</topic><topic>Image processing</topic><topic>intelligent vehicles</topic><topic>Obstacle avoidance</topic><topic>optical feedback</topic><topic>Optical flow (image analysis)</topic><topic>Optical imaging</topic><topic>Optical sensors</topic><topic>optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaub, Alexander</creatorcontrib><creatorcontrib>Baumgartner, Daniel</creatorcontrib><creatorcontrib>Burschka, Darius</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schaub, Alexander</au><au>Baumgartner, Daniel</au><au>Burschka, Darius</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive Obstacle Avoidance for Highly Maneuverable Vehicles Based on a Two-Stage Optical Flow Clustering</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>18</volume><issue>8</issue><spage>2137</spage><epage>2152</epage><pages>2137-2152</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes a reactive obstacle avoidance approach based solely on image data from a monocular camera stream. By clustering and analyzing the optical flow, this approach is able to identify potential collisions with dynamic obstacles. Epipolar geometry is exploited to derive velocity commands that ensure a collision-free path for a highly maneuverable autonomous vehicle via a real-time optimizer. First, the underlying image processing and optimization principles are explained in detail, before simulation results show the general feasibility of the approach. Finally, real-world tests with the ROboMObil, the German Aerospace Center's robotic electric vehicle, are provided to demonstrate its applicability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2016.2633292</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4824-4552</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2017-08, Vol.18 (8), p.2137-2152
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_7782362
source IEEE Electronic Library (IEL)
subjects Adaptive optics
Biomedical optical imaging
Cameras
Clustering
Collision avoidance
Collision dynamics
Commands
Computer terminals
Dynamics
Image processing
intelligent vehicles
Obstacle avoidance
optical feedback
Optical flow (image analysis)
Optical imaging
Optical sensors
optimization
title Reactive Obstacle Avoidance for Highly Maneuverable Vehicles Based on a Two-Stage Optical Flow Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A19%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20Obstacle%20Avoidance%20for%20Highly%20Maneuverable%20Vehicles%20Based%20on%20a%20Two-Stage%20Optical%20Flow%20Clustering&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Schaub,%20Alexander&rft.date=2017-08-01&rft.volume=18&rft.issue=8&rft.spage=2137&rft.epage=2152&rft.pages=2137-2152&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2016.2633292&rft_dat=%3Cproquest_RIE%3E1926797344%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926797344&rft_id=info:pmid/&rft_ieee_id=7782362&rfr_iscdi=true