Peer-to-Peer Control System for DC Microgrids

We propose and implement a dc microgrid with a fully decentralized control system, using the ICT concept of network overlays and peer-to-peer (P2P) networks. Decentralization not only concerns the physical systems and control logic but also the control structure which provides the network infrastruc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2018-07, Vol.9 (4), p.3667-3675
Hauptverfasser: Werth, Annette, Andre, Alexis, Kawamoto, Daisuke, Morita, Tadashi, Tajima, Shigeru, Tokoro, Mario, Yanagidaira, Daiki, Tanaka, Kenji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3675
container_issue 4
container_start_page 3667
container_title IEEE transactions on smart grid
container_volume 9
creator Werth, Annette
Andre, Alexis
Kawamoto, Daisuke
Morita, Tadashi
Tajima, Shigeru
Tokoro, Mario
Yanagidaira, Daiki
Tanaka, Kenji
description We propose and implement a dc microgrid with a fully decentralized control system, using the ICT concept of network overlays and peer-to-peer (P2P) networks. Decentralization not only concerns the physical systems and control logic but also the control structure which provides the network infrastructure on which energy management is carried out. In this paper, we show how such decentralization can be achieved using P2P frameworks as underlying control structures and implemented a pure P2P to eliminate single points of failure. For this, a direct current open energy system made of the interconnection of standalone dc nanogrids is used as underlying microgrid. The power flows between nanogrids are controlled by a decentralized exchange strategy: each household can request or respond to energy deals with its neighbors without requiring system-wide knowledge or control. Using dc combined with a layered, modular software allows loose coupling which increases flexibility and dependability. The system has been implemented and tested on a full-scale platform in Okinawa including 19 inhabited houses. Real data analysis as well as simulations demonstrate improvements in self-sufficiency compared to other types of systems. Resilience against utility blackouts is proven in practice.
doi_str_mv 10.1109/TSG.2016.2638462
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7781601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7781601</ieee_id><sourcerecordid>10_1109_TSG_2016_2638462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-616475a5b95633b76dba316ff7ebf1b2f617bba40202139f9302072eaa404ea53</originalsourceid><addsrcrecordid>eNo9j0FLAzEQhYMoWGrvgpf9A6mZzO6kOcqqVagotJ5D0k5kpXUl2Uv_vaktnct7DPPm8QlxC2oKoOz9ajmfagU01YSzmvSFGIGtrURFcHn2DV6LSc7fqgwikrYjIT-Ykxz6f63a_mdI_bZa7vPAuyr2qXpsq7dunfqv1G3yjbiKfpt5ctKx-Hx-WrUvcvE-f20fFnKN2g6SgGrT-CbYhhCDoU3wCBSj4RAh6EhgQvC10koD2mixOKPZl1XNvsGxUMe_pTjnxNH9pm7n096BcgdiV4jdgdidiEvk7hjpmPl8bswMSAH-AQfRT5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Peer-to-Peer Control System for DC Microgrids</title><source>IEEE Electronic Library (IEL)</source><creator>Werth, Annette ; Andre, Alexis ; Kawamoto, Daisuke ; Morita, Tadashi ; Tajima, Shigeru ; Tokoro, Mario ; Yanagidaira, Daiki ; Tanaka, Kenji</creator><creatorcontrib>Werth, Annette ; Andre, Alexis ; Kawamoto, Daisuke ; Morita, Tadashi ; Tajima, Shigeru ; Tokoro, Mario ; Yanagidaira, Daiki ; Tanaka, Kenji</creatorcontrib><description>We propose and implement a dc microgrid with a fully decentralized control system, using the ICT concept of network overlays and peer-to-peer (P2P) networks. Decentralization not only concerns the physical systems and control logic but also the control structure which provides the network infrastructure on which energy management is carried out. In this paper, we show how such decentralization can be achieved using P2P frameworks as underlying control structures and implemented a pure P2P to eliminate single points of failure. For this, a direct current open energy system made of the interconnection of standalone dc nanogrids is used as underlying microgrid. The power flows between nanogrids are controlled by a decentralized exchange strategy: each household can request or respond to energy deals with its neighbors without requiring system-wide knowledge or control. Using dc combined with a layered, modular software allows loose coupling which increases flexibility and dependability. The system has been implemented and tested on a full-scale platform in Okinawa including 19 inhabited houses. Real data analysis as well as simulations demonstrate improvements in self-sufficiency compared to other types of systems. Resilience against utility blackouts is proven in practice.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2638462</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control structure ; dc power systems ; decentralization ; Decentralized control ; Interconnected power system ; interconnected systems ; microgrid ; Microgrids ; Optimization ; Overlay networks ; peer-to-peer ; Peer-to-peer computing ; power system control ; Smart grids</subject><ispartof>IEEE transactions on smart grid, 2018-07, Vol.9 (4), p.3667-3675</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-616475a5b95633b76dba316ff7ebf1b2f617bba40202139f9302072eaa404ea53</citedby><cites>FETCH-LOGICAL-c329t-616475a5b95633b76dba316ff7ebf1b2f617bba40202139f9302072eaa404ea53</cites><orcidid>0000-0001-5102-2486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7781601$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7781601$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Werth, Annette</creatorcontrib><creatorcontrib>Andre, Alexis</creatorcontrib><creatorcontrib>Kawamoto, Daisuke</creatorcontrib><creatorcontrib>Morita, Tadashi</creatorcontrib><creatorcontrib>Tajima, Shigeru</creatorcontrib><creatorcontrib>Tokoro, Mario</creatorcontrib><creatorcontrib>Yanagidaira, Daiki</creatorcontrib><creatorcontrib>Tanaka, Kenji</creatorcontrib><title>Peer-to-Peer Control System for DC Microgrids</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>We propose and implement a dc microgrid with a fully decentralized control system, using the ICT concept of network overlays and peer-to-peer (P2P) networks. Decentralization not only concerns the physical systems and control logic but also the control structure which provides the network infrastructure on which energy management is carried out. In this paper, we show how such decentralization can be achieved using P2P frameworks as underlying control structures and implemented a pure P2P to eliminate single points of failure. For this, a direct current open energy system made of the interconnection of standalone dc nanogrids is used as underlying microgrid. The power flows between nanogrids are controlled by a decentralized exchange strategy: each household can request or respond to energy deals with its neighbors without requiring system-wide knowledge or control. Using dc combined with a layered, modular software allows loose coupling which increases flexibility and dependability. The system has been implemented and tested on a full-scale platform in Okinawa including 19 inhabited houses. Real data analysis as well as simulations demonstrate improvements in self-sufficiency compared to other types of systems. Resilience against utility blackouts is proven in practice.</description><subject>Control structure</subject><subject>dc power systems</subject><subject>decentralization</subject><subject>Decentralized control</subject><subject>Interconnected power system</subject><subject>interconnected systems</subject><subject>microgrid</subject><subject>Microgrids</subject><subject>Optimization</subject><subject>Overlay networks</subject><subject>peer-to-peer</subject><subject>Peer-to-peer computing</subject><subject>power system control</subject><subject>Smart grids</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0FLAzEQhYMoWGrvgpf9A6mZzO6kOcqqVagotJ5D0k5kpXUl2Uv_vaktnct7DPPm8QlxC2oKoOz9ajmfagU01YSzmvSFGIGtrURFcHn2DV6LSc7fqgwikrYjIT-Ykxz6f63a_mdI_bZa7vPAuyr2qXpsq7dunfqv1G3yjbiKfpt5ctKx-Hx-WrUvcvE-f20fFnKN2g6SgGrT-CbYhhCDoU3wCBSj4RAh6EhgQvC10koD2mixOKPZl1XNvsGxUMe_pTjnxNH9pm7n096BcgdiV4jdgdidiEvk7hjpmPl8bswMSAH-AQfRT5Q</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Werth, Annette</creator><creator>Andre, Alexis</creator><creator>Kawamoto, Daisuke</creator><creator>Morita, Tadashi</creator><creator>Tajima, Shigeru</creator><creator>Tokoro, Mario</creator><creator>Yanagidaira, Daiki</creator><creator>Tanaka, Kenji</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5102-2486</orcidid></search><sort><creationdate>201807</creationdate><title>Peer-to-Peer Control System for DC Microgrids</title><author>Werth, Annette ; Andre, Alexis ; Kawamoto, Daisuke ; Morita, Tadashi ; Tajima, Shigeru ; Tokoro, Mario ; Yanagidaira, Daiki ; Tanaka, Kenji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-616475a5b95633b76dba316ff7ebf1b2f617bba40202139f9302072eaa404ea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Control structure</topic><topic>dc power systems</topic><topic>decentralization</topic><topic>Decentralized control</topic><topic>Interconnected power system</topic><topic>interconnected systems</topic><topic>microgrid</topic><topic>Microgrids</topic><topic>Optimization</topic><topic>Overlay networks</topic><topic>peer-to-peer</topic><topic>Peer-to-peer computing</topic><topic>power system control</topic><topic>Smart grids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Werth, Annette</creatorcontrib><creatorcontrib>Andre, Alexis</creatorcontrib><creatorcontrib>Kawamoto, Daisuke</creatorcontrib><creatorcontrib>Morita, Tadashi</creatorcontrib><creatorcontrib>Tajima, Shigeru</creatorcontrib><creatorcontrib>Tokoro, Mario</creatorcontrib><creatorcontrib>Yanagidaira, Daiki</creatorcontrib><creatorcontrib>Tanaka, Kenji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Werth, Annette</au><au>Andre, Alexis</au><au>Kawamoto, Daisuke</au><au>Morita, Tadashi</au><au>Tajima, Shigeru</au><au>Tokoro, Mario</au><au>Yanagidaira, Daiki</au><au>Tanaka, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peer-to-Peer Control System for DC Microgrids</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-07</date><risdate>2018</risdate><volume>9</volume><issue>4</issue><spage>3667</spage><epage>3675</epage><pages>3667-3675</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>We propose and implement a dc microgrid with a fully decentralized control system, using the ICT concept of network overlays and peer-to-peer (P2P) networks. Decentralization not only concerns the physical systems and control logic but also the control structure which provides the network infrastructure on which energy management is carried out. In this paper, we show how such decentralization can be achieved using P2P frameworks as underlying control structures and implemented a pure P2P to eliminate single points of failure. For this, a direct current open energy system made of the interconnection of standalone dc nanogrids is used as underlying microgrid. The power flows between nanogrids are controlled by a decentralized exchange strategy: each household can request or respond to energy deals with its neighbors without requiring system-wide knowledge or control. Using dc combined with a layered, modular software allows loose coupling which increases flexibility and dependability. The system has been implemented and tested on a full-scale platform in Okinawa including 19 inhabited houses. Real data analysis as well as simulations demonstrate improvements in self-sufficiency compared to other types of systems. Resilience against utility blackouts is proven in practice.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2016.2638462</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5102-2486</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2018-07, Vol.9 (4), p.3667-3675
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_7781601
source IEEE Electronic Library (IEL)
subjects Control structure
dc power systems
decentralization
Decentralized control
Interconnected power system
interconnected systems
microgrid
Microgrids
Optimization
Overlay networks
peer-to-peer
Peer-to-peer computing
power system control
Smart grids
title Peer-to-Peer Control System for DC Microgrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peer-to-Peer%20Control%20System%20for%20DC%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Werth,%20Annette&rft.date=2018-07&rft.volume=9&rft.issue=4&rft.spage=3667&rft.epage=3675&rft.pages=3667-3675&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2638462&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2016_2638462%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7781601&rfr_iscdi=true