On Lossless Feedback Delay Networks

Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2017-03, Vol.65 (6), p.1554-1564
Hauptverfasser: Schlecht, Sebastian J., Habets, Emanuel A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1564
container_issue 6
container_start_page 1554
container_title IEEE transactions on signal processing
container_volume 65
creator Schlecht, Sebastian J.
Habets, Emanuel A. P.
description Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature.
doi_str_mv 10.1109/TSP.2016.2637323
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7778213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7778213</ieee_id><sourcerecordid>10_1109_TSP_2016_2637323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-eca6968d1f45383e256a1ce8a36b6e179b713681dd1e28adc7bb1efa8195ecd43</originalsourceid><addsrcrecordid>eNo9j81LAzEQxYMoWKt3wcuC510zmWw-jlKtCktbsIK3kE1moXa1khSk_323tHh67_Dem_kxdgu8AuD2Yfm-qAQHVQmFGgWesRFYCSWXWp0PntdY1kZ_XrKrnL84BymtGrH7-U_RbHLuKediShRbH9bFE_V-V8xo-7dJ63zNLjrfZ7o56Zh9TJ-Xk9eymb-8TR6bMgw3tyUFr6wyETpZo0EStfIQyHhUrSLQttWAykCMQML4GHTbAnXegK0pRIljxo-7IQ0fJercb1p9-7RzwN0B0g2Q7gDpTpBD5e5YWRHRf1xrbQQg7gF6aEzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Lossless Feedback Delay Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Schlecht, Sebastian J. ; Habets, Emanuel A. P.</creator><creatorcontrib>Schlecht, Sebastian J. ; Habets, Emanuel A. P.</creatorcontrib><description>Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2637323</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>artificial reverberation ; Delays ; diagonal similarity ; Eigenvalues and eigenfunctions ; Feedback delay network (FDN) ; Feedback loop ; lossless ; Manganese ; Reverberation ; Time-domain analysis ; Transmission line matrix methods</subject><ispartof>IEEE transactions on signal processing, 2017-03, Vol.65 (6), p.1554-1564</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-eca6968d1f45383e256a1ce8a36b6e179b713681dd1e28adc7bb1efa8195ecd43</citedby><cites>FETCH-LOGICAL-c263t-eca6968d1f45383e256a1ce8a36b6e179b713681dd1e28adc7bb1efa8195ecd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7778213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7778213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schlecht, Sebastian J.</creatorcontrib><creatorcontrib>Habets, Emanuel A. P.</creatorcontrib><title>On Lossless Feedback Delay Networks</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature.</description><subject>artificial reverberation</subject><subject>Delays</subject><subject>diagonal similarity</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Feedback delay network (FDN)</subject><subject>Feedback loop</subject><subject>lossless</subject><subject>Manganese</subject><subject>Reverberation</subject><subject>Time-domain analysis</subject><subject>Transmission line matrix methods</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j81LAzEQxYMoWKt3wcuC510zmWw-jlKtCktbsIK3kE1moXa1khSk_323tHh67_Dem_kxdgu8AuD2Yfm-qAQHVQmFGgWesRFYCSWXWp0PntdY1kZ_XrKrnL84BymtGrH7-U_RbHLuKediShRbH9bFE_V-V8xo-7dJ63zNLjrfZ7o56Zh9TJ-Xk9eymb-8TR6bMgw3tyUFr6wyETpZo0EStfIQyHhUrSLQttWAykCMQML4GHTbAnXegK0pRIljxo-7IQ0fJercb1p9-7RzwN0B0g2Q7gDpTpBD5e5YWRHRf1xrbQQg7gF6aEzh</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Schlecht, Sebastian J.</creator><creator>Habets, Emanuel A. P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170315</creationdate><title>On Lossless Feedback Delay Networks</title><author>Schlecht, Sebastian J. ; Habets, Emanuel A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-eca6968d1f45383e256a1ce8a36b6e179b713681dd1e28adc7bb1efa8195ecd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>artificial reverberation</topic><topic>Delays</topic><topic>diagonal similarity</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Feedback delay network (FDN)</topic><topic>Feedback loop</topic><topic>lossless</topic><topic>Manganese</topic><topic>Reverberation</topic><topic>Time-domain analysis</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlecht, Sebastian J.</creatorcontrib><creatorcontrib>Habets, Emanuel A. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schlecht, Sebastian J.</au><au>Habets, Emanuel A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Lossless Feedback Delay Networks</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-03-15</date><risdate>2017</risdate><volume>65</volume><issue>6</issue><spage>1554</spage><epage>1564</epage><pages>1554-1564</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2016.2637323</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2017-03, Vol.65 (6), p.1554-1564
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_7778213
source IEEE Electronic Library (IEL)
subjects artificial reverberation
Delays
diagonal similarity
Eigenvalues and eigenfunctions
Feedback delay network (FDN)
Feedback loop
lossless
Manganese
Reverberation
Time-domain analysis
Transmission line matrix methods
title On Lossless Feedback Delay Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Lossless%20Feedback%20Delay%20Networks&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Schlecht,%20Sebastian%20J.&rft.date=2017-03-15&rft.volume=65&rft.issue=6&rft.spage=1554&rft.epage=1564&rft.pages=1554-1564&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2637323&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2016_2637323%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7778213&rfr_iscdi=true