On Lossless Feedback Delay Networks
Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangula...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2017-03, Vol.65 (6), p.1554-1564 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1564 |
---|---|
container_issue | 6 |
container_start_page | 1554 |
container_title | IEEE transactions on signal processing |
container_volume | 65 |
creator | Schlecht, Sebastian J. Habets, Emanuel A. P. |
description | Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature. |
doi_str_mv | 10.1109/TSP.2016.2637323 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7778213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7778213</ieee_id><sourcerecordid>10_1109_TSP_2016_2637323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-eca6968d1f45383e256a1ce8a36b6e179b713681dd1e28adc7bb1efa8195ecd43</originalsourceid><addsrcrecordid>eNo9j81LAzEQxYMoWKt3wcuC510zmWw-jlKtCktbsIK3kE1moXa1khSk_323tHh67_Dem_kxdgu8AuD2Yfm-qAQHVQmFGgWesRFYCSWXWp0PntdY1kZ_XrKrnL84BymtGrH7-U_RbHLuKediShRbH9bFE_V-V8xo-7dJ63zNLjrfZ7o56Zh9TJ-Xk9eymb-8TR6bMgw3tyUFr6wyETpZo0EStfIQyHhUrSLQttWAykCMQML4GHTbAnXegK0pRIljxo-7IQ0fJercb1p9-7RzwN0B0g2Q7gDpTpBD5e5YWRHRf1xrbQQg7gF6aEzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Lossless Feedback Delay Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Schlecht, Sebastian J. ; Habets, Emanuel A. P.</creator><creatorcontrib>Schlecht, Sebastian J. ; Habets, Emanuel A. P.</creatorcontrib><description>Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2016.2637323</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>IEEE</publisher><subject>artificial reverberation ; Delays ; diagonal similarity ; Eigenvalues and eigenfunctions ; Feedback delay network (FDN) ; Feedback loop ; lossless ; Manganese ; Reverberation ; Time-domain analysis ; Transmission line matrix methods</subject><ispartof>IEEE transactions on signal processing, 2017-03, Vol.65 (6), p.1554-1564</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-eca6968d1f45383e256a1ce8a36b6e179b713681dd1e28adc7bb1efa8195ecd43</citedby><cites>FETCH-LOGICAL-c263t-eca6968d1f45383e256a1ce8a36b6e179b713681dd1e28adc7bb1efa8195ecd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7778213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7778213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schlecht, Sebastian J.</creatorcontrib><creatorcontrib>Habets, Emanuel A. P.</creatorcontrib><title>On Lossless Feedback Delay Networks</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature.</description><subject>artificial reverberation</subject><subject>Delays</subject><subject>diagonal similarity</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Feedback delay network (FDN)</subject><subject>Feedback loop</subject><subject>lossless</subject><subject>Manganese</subject><subject>Reverberation</subject><subject>Time-domain analysis</subject><subject>Transmission line matrix methods</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j81LAzEQxYMoWKt3wcuC510zmWw-jlKtCktbsIK3kE1moXa1khSk_323tHh67_Dem_kxdgu8AuD2Yfm-qAQHVQmFGgWesRFYCSWXWp0PntdY1kZ_XrKrnL84BymtGrH7-U_RbHLuKediShRbH9bFE_V-V8xo-7dJ63zNLjrfZ7o56Zh9TJ-Xk9eymb-8TR6bMgw3tyUFr6wyETpZo0EStfIQyHhUrSLQttWAykCMQML4GHTbAnXegK0pRIljxo-7IQ0fJercb1p9-7RzwN0B0g2Q7gDpTpBD5e5YWRHRf1xrbQQg7gF6aEzh</recordid><startdate>20170315</startdate><enddate>20170315</enddate><creator>Schlecht, Sebastian J.</creator><creator>Habets, Emanuel A. P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170315</creationdate><title>On Lossless Feedback Delay Networks</title><author>Schlecht, Sebastian J. ; Habets, Emanuel A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-eca6968d1f45383e256a1ce8a36b6e179b713681dd1e28adc7bb1efa8195ecd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>artificial reverberation</topic><topic>Delays</topic><topic>diagonal similarity</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Feedback delay network (FDN)</topic><topic>Feedback loop</topic><topic>lossless</topic><topic>Manganese</topic><topic>Reverberation</topic><topic>Time-domain analysis</topic><topic>Transmission line matrix methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlecht, Sebastian J.</creatorcontrib><creatorcontrib>Habets, Emanuel A. P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schlecht, Sebastian J.</au><au>Habets, Emanuel A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Lossless Feedback Delay Networks</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2017-03-15</date><risdate>2017</risdate><volume>65</volume><issue>6</issue><spage>1554</spage><epage>1564</epage><pages>1554-1564</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature.</abstract><pub>IEEE</pub><doi>10.1109/TSP.2016.2637323</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2017-03, Vol.65 (6), p.1554-1564 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_7778213 |
source | IEEE Electronic Library (IEL) |
subjects | artificial reverberation Delays diagonal similarity Eigenvalues and eigenfunctions Feedback delay network (FDN) Feedback loop lossless Manganese Reverberation Time-domain analysis Transmission line matrix methods |
title | On Lossless Feedback Delay Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Lossless%20Feedback%20Delay%20Networks&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Schlecht,%20Sebastian%20J.&rft.date=2017-03-15&rft.volume=65&rft.issue=6&rft.spage=1554&rft.epage=1564&rft.pages=1554-1564&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2016.2637323&rft_dat=%3Ccrossref_RIE%3E10_1109_TSP_2016_2637323%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7778213&rfr_iscdi=true |