Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source
A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is a...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2017-01, Vol.35 (2), p.238-245 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 2 |
container_start_page | 238 |
container_title | Journal of lightwave technology |
container_volume | 35 |
creator | Hraghi, Abir Chaibi, Mohamed Essghair Menif, Mourad Erasme, Didier |
description | A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is applied to derive the necessary settings allowing the optical flat comb source (OFCS) to be ultraflat. The OFCS is mooted as a technology to enhance the overall capacity of an access optical network by increasing the number of wavelength division multiplexing (WDM) channels. Here, we demonstrate an ultradense WDM (UDWDM) transmission for application to passive optical networks with (11 × 12.5 Gbps) quadrature amplitude modulation (QAM) based on a 4 b/s/Hz spectral efficiency orthogonal frequency division multiplex (16QAM-OFDM) transmitter and direct detection. We use an OFCS to generate the 11 subcarriers spaced by 6.25 GHz, made of a two-stage MZM. We study the performance of three filtered channels in terms of error vector magnitude in back-to-back (B-to-B) conditions and after propagation through 25 and 100 km standard single mode fiber. |
doi_str_mv | 10.1109/JLT.2016.2636442 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7776785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7776785</ieee_id><sourcerecordid>1869404602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2a19adf1b9e07391c5de9e3824da45827c541078e77c440ec9ded207b31ae9623</originalsourceid><addsrcrecordid>eNo9kEtLw0AURgdRsFb3gpsBVy5S5_1YltZaJaWIKV0Ok2SiKWlSZ1LBf29CSjf3wuXcj48DwD1GE4yRfn6PkwlBWEyIoIIxcgFGmHMVEYLpJRghSWmkJGHX4CaEHUKYMSVHYDt3-6YOrbdt2dSwKSAWH9NVtF7MV3Az33Yz8bYO-zKEHtiEsv6CFibH2qaVg-tDW2a2govKtnDW7FP42Rx95m7BVWGr4O5Oeww2i5dktozi9evbbBpHGSW8jYjF2uYFTrXrGmqc8dxpRxVhuWVcEZlxhpFUTsqMMeQynbucIJlSbJ0WhI7B05D7bStz8OXe-j_T2NIsp7Hpb4gQJTnSv7hjHwf24Jufowut2XVd666ewUpohphAfSIaqMw3IXhXnGMxMr1q06k2vWpzUt29PAwvpXPujEsphVSc_gPVEna4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869404602</pqid></control><display><type>article</type><title>Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source</title><source>IEEE Electronic Library (IEL)</source><creator>Hraghi, Abir ; Chaibi, Mohamed Essghair ; Menif, Mourad ; Erasme, Didier</creator><creatorcontrib>Hraghi, Abir ; Chaibi, Mohamed Essghair ; Menif, Mourad ; Erasme, Didier</creatorcontrib><description>A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is applied to derive the necessary settings allowing the optical flat comb source (OFCS) to be ultraflat. The OFCS is mooted as a technology to enhance the overall capacity of an access optical network by increasing the number of wavelength division multiplexing (WDM) channels. Here, we demonstrate an ultradense WDM (UDWDM) transmission for application to passive optical networks with (11 × 12.5 Gbps) quadrature amplitude modulation (QAM) based on a 4 b/s/Hz spectral efficiency orthogonal frequency division multiplex (16QAM-OFDM) transmitter and direct detection. We use an OFCS to generate the 11 subcarriers spaced by 6.25 GHz, made of a two-stage MZM. We study the performance of three filtered channels in terms of error vector magnitude in back-to-back (B-to-B) conditions and after propagation through 25 and 100 km standard single mode fiber.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2016.2636442</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive optics ; Back propagation ; Bandwidths ; Channels ; Computer networks ; Direct detection ; dual arm-MZM ; Engineering Sciences ; Fiber optic networks ; Line spectra ; Linearization ; Mach-Zehnder interferometers ; OFDM ; Optical communication ; optical flat comb source ; Optical modulation ; Optical network units ; Optical transmitters ; Optics ; Optimization ; Orthogonal Frequency Division Multiplexing ; Passive optical networks ; Photonic ; Quadrature amplitude modulation ; Simulated annealing ; Subcarriers ; UDWDM-PON ; Wave division multiplexing ; Wavelength division multiplexing</subject><ispartof>Journal of lightwave technology, 2017-01, Vol.35 (2), p.238-245</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2a19adf1b9e07391c5de9e3824da45827c541078e77c440ec9ded207b31ae9623</citedby><cites>FETCH-LOGICAL-c325t-2a19adf1b9e07391c5de9e3824da45827c541078e77c440ec9ded207b31ae9623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7776785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7776785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://telecom-paris.hal.science/hal-02287509$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hraghi, Abir</creatorcontrib><creatorcontrib>Chaibi, Mohamed Essghair</creatorcontrib><creatorcontrib>Menif, Mourad</creatorcontrib><creatorcontrib>Erasme, Didier</creatorcontrib><title>Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is applied to derive the necessary settings allowing the optical flat comb source (OFCS) to be ultraflat. The OFCS is mooted as a technology to enhance the overall capacity of an access optical network by increasing the number of wavelength division multiplexing (WDM) channels. Here, we demonstrate an ultradense WDM (UDWDM) transmission for application to passive optical networks with (11 × 12.5 Gbps) quadrature amplitude modulation (QAM) based on a 4 b/s/Hz spectral efficiency orthogonal frequency division multiplex (16QAM-OFDM) transmitter and direct detection. We use an OFCS to generate the 11 subcarriers spaced by 6.25 GHz, made of a two-stage MZM. We study the performance of three filtered channels in terms of error vector magnitude in back-to-back (B-to-B) conditions and after propagation through 25 and 100 km standard single mode fiber.</description><subject>Adaptive optics</subject><subject>Back propagation</subject><subject>Bandwidths</subject><subject>Channels</subject><subject>Computer networks</subject><subject>Direct detection</subject><subject>dual arm-MZM</subject><subject>Engineering Sciences</subject><subject>Fiber optic networks</subject><subject>Line spectra</subject><subject>Linearization</subject><subject>Mach-Zehnder interferometers</subject><subject>OFDM</subject><subject>Optical communication</subject><subject>optical flat comb source</subject><subject>Optical modulation</subject><subject>Optical network units</subject><subject>Optical transmitters</subject><subject>Optics</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Passive optical networks</subject><subject>Photonic</subject><subject>Quadrature amplitude modulation</subject><subject>Simulated annealing</subject><subject>Subcarriers</subject><subject>UDWDM-PON</subject><subject>Wave division multiplexing</subject><subject>Wavelength division multiplexing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AURgdRsFb3gpsBVy5S5_1YltZaJaWIKV0Ok2SiKWlSZ1LBf29CSjf3wuXcj48DwD1GE4yRfn6PkwlBWEyIoIIxcgFGmHMVEYLpJRghSWmkJGHX4CaEHUKYMSVHYDt3-6YOrbdt2dSwKSAWH9NVtF7MV3Az33Yz8bYO-zKEHtiEsv6CFibH2qaVg-tDW2a2govKtnDW7FP42Rx95m7BVWGr4O5Oeww2i5dktozi9evbbBpHGSW8jYjF2uYFTrXrGmqc8dxpRxVhuWVcEZlxhpFUTsqMMeQynbucIJlSbJ0WhI7B05D7bStz8OXe-j_T2NIsp7Hpb4gQJTnSv7hjHwf24Jufowut2XVd666ewUpohphAfSIaqMw3IXhXnGMxMr1q06k2vWpzUt29PAwvpXPujEsphVSc_gPVEna4</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Hraghi, Abir</creator><creator>Chaibi, Mohamed Essghair</creator><creator>Menif, Mourad</creator><creator>Erasme, Didier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20170115</creationdate><title>Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source</title><author>Hraghi, Abir ; Chaibi, Mohamed Essghair ; Menif, Mourad ; Erasme, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2a19adf1b9e07391c5de9e3824da45827c541078e77c440ec9ded207b31ae9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive optics</topic><topic>Back propagation</topic><topic>Bandwidths</topic><topic>Channels</topic><topic>Computer networks</topic><topic>Direct detection</topic><topic>dual arm-MZM</topic><topic>Engineering Sciences</topic><topic>Fiber optic networks</topic><topic>Line spectra</topic><topic>Linearization</topic><topic>Mach-Zehnder interferometers</topic><topic>OFDM</topic><topic>Optical communication</topic><topic>optical flat comb source</topic><topic>Optical modulation</topic><topic>Optical network units</topic><topic>Optical transmitters</topic><topic>Optics</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Passive optical networks</topic><topic>Photonic</topic><topic>Quadrature amplitude modulation</topic><topic>Simulated annealing</topic><topic>Subcarriers</topic><topic>UDWDM-PON</topic><topic>Wave division multiplexing</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hraghi, Abir</creatorcontrib><creatorcontrib>Chaibi, Mohamed Essghair</creatorcontrib><creatorcontrib>Menif, Mourad</creatorcontrib><creatorcontrib>Erasme, Didier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hraghi, Abir</au><au>Chaibi, Mohamed Essghair</au><au>Menif, Mourad</au><au>Erasme, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2017-01-15</date><risdate>2017</risdate><volume>35</volume><issue>2</issue><spage>238</spage><epage>245</epage><pages>238-245</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is applied to derive the necessary settings allowing the optical flat comb source (OFCS) to be ultraflat. The OFCS is mooted as a technology to enhance the overall capacity of an access optical network by increasing the number of wavelength division multiplexing (WDM) channels. Here, we demonstrate an ultradense WDM (UDWDM) transmission for application to passive optical networks with (11 × 12.5 Gbps) quadrature amplitude modulation (QAM) based on a 4 b/s/Hz spectral efficiency orthogonal frequency division multiplex (16QAM-OFDM) transmitter and direct detection. We use an OFCS to generate the 11 subcarriers spaced by 6.25 GHz, made of a two-stage MZM. We study the performance of three filtered channels in terms of error vector magnitude in back-to-back (B-to-B) conditions and after propagation through 25 and 100 km standard single mode fiber.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2016.2636442</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2017-01, Vol.35 (2), p.238-245 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_7776785 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive optics Back propagation Bandwidths Channels Computer networks Direct detection dual arm-MZM Engineering Sciences Fiber optic networks Line spectra Linearization Mach-Zehnder interferometers OFDM Optical communication optical flat comb source Optical modulation Optical network units Optical transmitters Optics Optimization Orthogonal Frequency Division Multiplexing Passive optical networks Photonic Quadrature amplitude modulation Simulated annealing Subcarriers UDWDM-PON Wave division multiplexing Wavelength division multiplexing |
title | Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%2016QAM-OFDM%20UDWDM%20Transmission%20Using%20a%20Tunable%20Optical%20Flat%20Comb%20Source&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Hraghi,%20Abir&rft.date=2017-01-15&rft.volume=35&rft.issue=2&rft.spage=238&rft.epage=245&rft.pages=238-245&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2016.2636442&rft_dat=%3Cproquest_RIE%3E1869404602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869404602&rft_id=info:pmid/&rft_ieee_id=7776785&rfr_iscdi=true |