Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source

A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2017-01, Vol.35 (2), p.238-245
Hauptverfasser: Hraghi, Abir, Chaibi, Mohamed Essghair, Menif, Mourad, Erasme, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 2
container_start_page 238
container_title Journal of lightwave technology
container_volume 35
creator Hraghi, Abir
Chaibi, Mohamed Essghair
Menif, Mourad
Erasme, Didier
description A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is applied to derive the necessary settings allowing the optical flat comb source (OFCS) to be ultraflat. The OFCS is mooted as a technology to enhance the overall capacity of an access optical network by increasing the number of wavelength division multiplexing (WDM) channels. Here, we demonstrate an ultradense WDM (UDWDM) transmission for application to passive optical networks with (11 × 12.5 Gbps) quadrature amplitude modulation (QAM) based on a 4 b/s/Hz spectral efficiency orthogonal frequency division multiplex (16QAM-OFDM) transmitter and direct detection. We use an OFCS to generate the 11 subcarriers spaced by 6.25 GHz, made of a two-stage MZM. We study the performance of three filtered channels in terms of error vector magnitude in back-to-back (B-to-B) conditions and after propagation through 25 and 100 km standard single mode fiber.
doi_str_mv 10.1109/JLT.2016.2636442
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7776785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7776785</ieee_id><sourcerecordid>1869404602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2a19adf1b9e07391c5de9e3824da45827c541078e77c440ec9ded207b31ae9623</originalsourceid><addsrcrecordid>eNo9kEtLw0AURgdRsFb3gpsBVy5S5_1YltZaJaWIKV0Ok2SiKWlSZ1LBf29CSjf3wuXcj48DwD1GE4yRfn6PkwlBWEyIoIIxcgFGmHMVEYLpJRghSWmkJGHX4CaEHUKYMSVHYDt3-6YOrbdt2dSwKSAWH9NVtF7MV3Az33Yz8bYO-zKEHtiEsv6CFibH2qaVg-tDW2a2govKtnDW7FP42Rx95m7BVWGr4O5Oeww2i5dktozi9evbbBpHGSW8jYjF2uYFTrXrGmqc8dxpRxVhuWVcEZlxhpFUTsqMMeQynbucIJlSbJ0WhI7B05D7bStz8OXe-j_T2NIsp7Hpb4gQJTnSv7hjHwf24Jufowut2XVd666ewUpohphAfSIaqMw3IXhXnGMxMr1q06k2vWpzUt29PAwvpXPujEsphVSc_gPVEna4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869404602</pqid></control><display><type>article</type><title>Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source</title><source>IEEE Electronic Library (IEL)</source><creator>Hraghi, Abir ; Chaibi, Mohamed Essghair ; Menif, Mourad ; Erasme, Didier</creator><creatorcontrib>Hraghi, Abir ; Chaibi, Mohamed Essghair ; Menif, Mourad ; Erasme, Didier</creatorcontrib><description>A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is applied to derive the necessary settings allowing the optical flat comb source (OFCS) to be ultraflat. The OFCS is mooted as a technology to enhance the overall capacity of an access optical network by increasing the number of wavelength division multiplexing (WDM) channels. Here, we demonstrate an ultradense WDM (UDWDM) transmission for application to passive optical networks with (11 × 12.5 Gbps) quadrature amplitude modulation (QAM) based on a 4 b/s/Hz spectral efficiency orthogonal frequency division multiplex (16QAM-OFDM) transmitter and direct detection. We use an OFCS to generate the 11 subcarriers spaced by 6.25 GHz, made of a two-stage MZM. We study the performance of three filtered channels in terms of error vector magnitude in back-to-back (B-to-B) conditions and after propagation through 25 and 100 km standard single mode fiber.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2016.2636442</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive optics ; Back propagation ; Bandwidths ; Channels ; Computer networks ; Direct detection ; dual arm-MZM ; Engineering Sciences ; Fiber optic networks ; Line spectra ; Linearization ; Mach-Zehnder interferometers ; OFDM ; Optical communication ; optical flat comb source ; Optical modulation ; Optical network units ; Optical transmitters ; Optics ; Optimization ; Orthogonal Frequency Division Multiplexing ; Passive optical networks ; Photonic ; Quadrature amplitude modulation ; Simulated annealing ; Subcarriers ; UDWDM-PON ; Wave division multiplexing ; Wavelength division multiplexing</subject><ispartof>Journal of lightwave technology, 2017-01, Vol.35 (2), p.238-245</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2a19adf1b9e07391c5de9e3824da45827c541078e77c440ec9ded207b31ae9623</citedby><cites>FETCH-LOGICAL-c325t-2a19adf1b9e07391c5de9e3824da45827c541078e77c440ec9ded207b31ae9623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7776785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,781,785,797,886,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7776785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://telecom-paris.hal.science/hal-02287509$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hraghi, Abir</creatorcontrib><creatorcontrib>Chaibi, Mohamed Essghair</creatorcontrib><creatorcontrib>Menif, Mourad</creatorcontrib><creatorcontrib>Erasme, Didier</creatorcontrib><title>Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is applied to derive the necessary settings allowing the optical flat comb source (OFCS) to be ultraflat. The OFCS is mooted as a technology to enhance the overall capacity of an access optical network by increasing the number of wavelength division multiplexing (WDM) channels. Here, we demonstrate an ultradense WDM (UDWDM) transmission for application to passive optical networks with (11 × 12.5 Gbps) quadrature amplitude modulation (QAM) based on a 4 b/s/Hz spectral efficiency orthogonal frequency division multiplex (16QAM-OFDM) transmitter and direct detection. We use an OFCS to generate the 11 subcarriers spaced by 6.25 GHz, made of a two-stage MZM. We study the performance of three filtered channels in terms of error vector magnitude in back-to-back (B-to-B) conditions and after propagation through 25 and 100 km standard single mode fiber.</description><subject>Adaptive optics</subject><subject>Back propagation</subject><subject>Bandwidths</subject><subject>Channels</subject><subject>Computer networks</subject><subject>Direct detection</subject><subject>dual arm-MZM</subject><subject>Engineering Sciences</subject><subject>Fiber optic networks</subject><subject>Line spectra</subject><subject>Linearization</subject><subject>Mach-Zehnder interferometers</subject><subject>OFDM</subject><subject>Optical communication</subject><subject>optical flat comb source</subject><subject>Optical modulation</subject><subject>Optical network units</subject><subject>Optical transmitters</subject><subject>Optics</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Passive optical networks</subject><subject>Photonic</subject><subject>Quadrature amplitude modulation</subject><subject>Simulated annealing</subject><subject>Subcarriers</subject><subject>UDWDM-PON</subject><subject>Wave division multiplexing</subject><subject>Wavelength division multiplexing</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AURgdRsFb3gpsBVy5S5_1YltZaJaWIKV0Ok2SiKWlSZ1LBf29CSjf3wuXcj48DwD1GE4yRfn6PkwlBWEyIoIIxcgFGmHMVEYLpJRghSWmkJGHX4CaEHUKYMSVHYDt3-6YOrbdt2dSwKSAWH9NVtF7MV3Az33Yz8bYO-zKEHtiEsv6CFibH2qaVg-tDW2a2govKtnDW7FP42Rx95m7BVWGr4O5Oeww2i5dktozi9evbbBpHGSW8jYjF2uYFTrXrGmqc8dxpRxVhuWVcEZlxhpFUTsqMMeQynbucIJlSbJ0WhI7B05D7bStz8OXe-j_T2NIsp7Hpb4gQJTnSv7hjHwf24Jufowut2XVd666ewUpohphAfSIaqMw3IXhXnGMxMr1q06k2vWpzUt29PAwvpXPujEsphVSc_gPVEna4</recordid><startdate>20170115</startdate><enddate>20170115</enddate><creator>Hraghi, Abir</creator><creator>Chaibi, Mohamed Essghair</creator><creator>Menif, Mourad</creator><creator>Erasme, Didier</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers (IEEE)/Optical Society of America(OSA)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20170115</creationdate><title>Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source</title><author>Hraghi, Abir ; Chaibi, Mohamed Essghair ; Menif, Mourad ; Erasme, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2a19adf1b9e07391c5de9e3824da45827c541078e77c440ec9ded207b31ae9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptive optics</topic><topic>Back propagation</topic><topic>Bandwidths</topic><topic>Channels</topic><topic>Computer networks</topic><topic>Direct detection</topic><topic>dual arm-MZM</topic><topic>Engineering Sciences</topic><topic>Fiber optic networks</topic><topic>Line spectra</topic><topic>Linearization</topic><topic>Mach-Zehnder interferometers</topic><topic>OFDM</topic><topic>Optical communication</topic><topic>optical flat comb source</topic><topic>Optical modulation</topic><topic>Optical network units</topic><topic>Optical transmitters</topic><topic>Optics</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Passive optical networks</topic><topic>Photonic</topic><topic>Quadrature amplitude modulation</topic><topic>Simulated annealing</topic><topic>Subcarriers</topic><topic>UDWDM-PON</topic><topic>Wave division multiplexing</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hraghi, Abir</creatorcontrib><creatorcontrib>Chaibi, Mohamed Essghair</creatorcontrib><creatorcontrib>Menif, Mourad</creatorcontrib><creatorcontrib>Erasme, Didier</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hraghi, Abir</au><au>Chaibi, Mohamed Essghair</au><au>Menif, Mourad</au><au>Erasme, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2017-01-15</date><risdate>2017</risdate><volume>35</volume><issue>2</issue><spage>238</spage><epage>245</epage><pages>238-245</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>A new approach for designing broad and flattened spectrum multicarriers optical sources is presented leading to a 32 spectral lines source by using a dual-arm Mach-Zehnder modulator (MZM) and a 41 spectral lines source from two-stage MZM. A modified simulated annealing-based optimization method is applied to derive the necessary settings allowing the optical flat comb source (OFCS) to be ultraflat. The OFCS is mooted as a technology to enhance the overall capacity of an access optical network by increasing the number of wavelength division multiplexing (WDM) channels. Here, we demonstrate an ultradense WDM (UDWDM) transmission for application to passive optical networks with (11 × 12.5 Gbps) quadrature amplitude modulation (QAM) based on a 4 b/s/Hz spectral efficiency orthogonal frequency division multiplex (16QAM-OFDM) transmitter and direct detection. We use an OFCS to generate the 11 subcarriers spaced by 6.25 GHz, made of a two-stage MZM. We study the performance of three filtered channels in terms of error vector magnitude in back-to-back (B-to-B) conditions and after propagation through 25 and 100 km standard single mode fiber.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2016.2636442</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2017-01, Vol.35 (2), p.238-245
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_7776785
source IEEE Electronic Library (IEL)
subjects Adaptive optics
Back propagation
Bandwidths
Channels
Computer networks
Direct detection
dual arm-MZM
Engineering Sciences
Fiber optic networks
Line spectra
Linearization
Mach-Zehnder interferometers
OFDM
Optical communication
optical flat comb source
Optical modulation
Optical network units
Optical transmitters
Optics
Optimization
Orthogonal Frequency Division Multiplexing
Passive optical networks
Photonic
Quadrature amplitude modulation
Simulated annealing
Subcarriers
UDWDM-PON
Wave division multiplexing
Wavelength division multiplexing
title Demonstration of 16QAM-OFDM UDWDM Transmission Using a Tunable Optical Flat Comb Source
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demonstration%20of%2016QAM-OFDM%20UDWDM%20Transmission%20Using%20a%20Tunable%20Optical%20Flat%20Comb%20Source&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Hraghi,%20Abir&rft.date=2017-01-15&rft.volume=35&rft.issue=2&rft.spage=238&rft.epage=245&rft.pages=238-245&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2016.2636442&rft_dat=%3Cproquest_RIE%3E1869404602%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869404602&rft_id=info:pmid/&rft_ieee_id=7776785&rfr_iscdi=true