Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews

Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2017-02, Vol.63 (2), p.1120-1129
Hauptverfasser: Engelberg, Shlomo, Keren, Osnat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1129
container_issue 2
container_start_page 1120
container_title IEEE transactions on information theory
container_volume 63
creator Engelberg, Shlomo
Keren, Osnat
description Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common) assumption that despite the delays, all signals from the ith transmission arrive at the decoder before any signal from the (i+2)nd transmission arrives is called a no switch assumption. This paper presents a self-synchronizing, zero-latency, zero-error coding scheme that requires no acknowledge and can decode transmissions distorted by an arbitrary number of skews that obey this no switch assumption. The rate associated with the coding scheme provides a lower bound of 0.6942 for the (zero-error) capacity of such a channel. It is further shown that zero-error channel capacity of the channel is upper bounded by 0.7248. Finally, this paper presents bounds on the (zero-error) capacity of a channel for which the number of transmissions that can mix with one another is large.
doi_str_mv 10.1109/TIT.2016.2636216
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7775088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7775088</ieee_id><sourcerecordid>4307460771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9ba44d5f6145613b5ac03522a399c9fed9b08fe812925c8d1ab886fa01fce5293</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxoMoOKd3wUvAc2de0qTJsRSdg4EyJx5DmqWss2tn0iL7783c8Ojp8eD73ve-H0K3QCYARD0sZ8sJJSAmVDBBQZyhEXCeJUrw9ByNCAGZqDSVl-gqhE1cUw50hBYL19SmbBwuuu12aGtr-rprA86t70LAr8abpnENzsO-tWvftd0QcLE2beuagD_qfo1zX9a9N36P3z7dd7hGF5Vpgrs5zTF6f3pcFs_J_GU6K_J5YhmoPlGlSdMVr0T8RAArubGEcUoNU8qqyq1USWTlJFBFuZUrMKWUojIEKus4VWyM7o93d777Glzo9aYbfBsjNYUsZTTjkcU_KpAxl4BSEFXkqPpt7V2ld77exkoaiD7w1ZGvPvDVJ77Rcne01M65P3mWZZxIyX4ArBd13w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861301991</pqid></control><display><type>article</type><title>Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews</title><source>IEEE Electronic Library (IEL)</source><creator>Engelberg, Shlomo ; Keren, Osnat</creator><creatorcontrib>Engelberg, Shlomo ; Keren, Osnat</creatorcontrib><description>Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common) assumption that despite the delays, all signals from the ith transmission arrive at the decoder before any signal from the (i+2)nd transmission arrives is called a no switch assumption. This paper presents a self-synchronizing, zero-latency, zero-error coding scheme that requires no acknowledge and can decode transmissions distorted by an arbitrary number of skews that obey this no switch assumption. The rate associated with the coding scheme provides a lower bound of 0.6942 for the (zero-error) capacity of such a channel. It is further shown that zero-error channel capacity of the channel is upper bounded by 0.7248. Finally, this paper presents bounds on the (zero-error) capacity of a channel for which the number of transmissions that can mix with one another is large.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2636216</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asynchronous ; Channel capacity ; Channels ; Clocks ; Coding ; Coding theory ; Communication channels ; Delays ; Encoding ; Errors ; Information theory ; Lower bounds ; parallel asynchronous communications ; Random delays ; Receivers ; Signal processing ; skew ; Switches ; Synchronism ; Wires ; zero-error capacity ; zero-error codes</subject><ispartof>IEEE transactions on information theory, 2017-02, Vol.63 (2), p.1120-1129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2017</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9ba44d5f6145613b5ac03522a399c9fed9b08fe812925c8d1ab886fa01fce5293</citedby><cites>FETCH-LOGICAL-c319t-9ba44d5f6145613b5ac03522a399c9fed9b08fe812925c8d1ab886fa01fce5293</cites><orcidid>0000-0002-3101-9551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7775088$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7775088$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Engelberg, Shlomo</creatorcontrib><creatorcontrib>Keren, Osnat</creatorcontrib><title>Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common) assumption that despite the delays, all signals from the ith transmission arrive at the decoder before any signal from the (i+2)nd transmission arrives is called a no switch assumption. This paper presents a self-synchronizing, zero-latency, zero-error coding scheme that requires no acknowledge and can decode transmissions distorted by an arbitrary number of skews that obey this no switch assumption. The rate associated with the coding scheme provides a lower bound of 0.6942 for the (zero-error) capacity of such a channel. It is further shown that zero-error channel capacity of the channel is upper bounded by 0.7248. Finally, this paper presents bounds on the (zero-error) capacity of a channel for which the number of transmissions that can mix with one another is large.</description><subject>Asynchronous</subject><subject>Channel capacity</subject><subject>Channels</subject><subject>Clocks</subject><subject>Coding</subject><subject>Coding theory</subject><subject>Communication channels</subject><subject>Delays</subject><subject>Encoding</subject><subject>Errors</subject><subject>Information theory</subject><subject>Lower bounds</subject><subject>parallel asynchronous communications</subject><subject>Random delays</subject><subject>Receivers</subject><subject>Signal processing</subject><subject>skew</subject><subject>Switches</subject><subject>Synchronism</subject><subject>Wires</subject><subject>zero-error capacity</subject><subject>zero-error codes</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kMFLwzAUxoMoOKd3wUvAc2de0qTJsRSdg4EyJx5DmqWss2tn0iL7783c8Ojp8eD73ve-H0K3QCYARD0sZ8sJJSAmVDBBQZyhEXCeJUrw9ByNCAGZqDSVl-gqhE1cUw50hBYL19SmbBwuuu12aGtr-rprA86t70LAr8abpnENzsO-tWvftd0QcLE2beuagD_qfo1zX9a9N36P3z7dd7hGF5Vpgrs5zTF6f3pcFs_J_GU6K_J5YhmoPlGlSdMVr0T8RAArubGEcUoNU8qqyq1USWTlJFBFuZUrMKWUojIEKus4VWyM7o93d777Glzo9aYbfBsjNYUsZTTjkcU_KpAxl4BSEFXkqPpt7V2ld77exkoaiD7w1ZGvPvDVJ77Rcne01M65P3mWZZxIyX4ArBd13w</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Engelberg, Shlomo</creator><creator>Keren, Osnat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3101-9551</orcidid></search><sort><creationdate>20170201</creationdate><title>Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews</title><author>Engelberg, Shlomo ; Keren, Osnat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9ba44d5f6145613b5ac03522a399c9fed9b08fe812925c8d1ab886fa01fce5293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asynchronous</topic><topic>Channel capacity</topic><topic>Channels</topic><topic>Clocks</topic><topic>Coding</topic><topic>Coding theory</topic><topic>Communication channels</topic><topic>Delays</topic><topic>Encoding</topic><topic>Errors</topic><topic>Information theory</topic><topic>Lower bounds</topic><topic>parallel asynchronous communications</topic><topic>Random delays</topic><topic>Receivers</topic><topic>Signal processing</topic><topic>skew</topic><topic>Switches</topic><topic>Synchronism</topic><topic>Wires</topic><topic>zero-error capacity</topic><topic>zero-error codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelberg, Shlomo</creatorcontrib><creatorcontrib>Keren, Osnat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Engelberg, Shlomo</au><au>Keren, Osnat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>63</volume><issue>2</issue><spage>1120</spage><epage>1129</epage><pages>1120-1129</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common) assumption that despite the delays, all signals from the ith transmission arrive at the decoder before any signal from the (i+2)nd transmission arrives is called a no switch assumption. This paper presents a self-synchronizing, zero-latency, zero-error coding scheme that requires no acknowledge and can decode transmissions distorted by an arbitrary number of skews that obey this no switch assumption. The rate associated with the coding scheme provides a lower bound of 0.6942 for the (zero-error) capacity of such a channel. It is further shown that zero-error channel capacity of the channel is upper bounded by 0.7248. Finally, this paper presents bounds on the (zero-error) capacity of a channel for which the number of transmissions that can mix with one another is large.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2636216</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3101-9551</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2017-02, Vol.63 (2), p.1120-1129
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_7775088
source IEEE Electronic Library (IEL)
subjects Asynchronous
Channel capacity
Channels
Clocks
Coding
Coding theory
Communication channels
Delays
Encoding
Errors
Information theory
Lower bounds
parallel asynchronous communications
Random delays
Receivers
Signal processing
skew
Switches
Synchronism
Wires
zero-error capacity
zero-error codes
title Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20Communications%20Across%20Parallel%20Asynchronous%20Channels%20With%20Arbitrary%20Skews&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Engelberg,%20Shlomo&rft.date=2017-02-01&rft.volume=63&rft.issue=2&rft.spage=1120&rft.epage=1129&rft.pages=1120-1129&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2636216&rft_dat=%3Cproquest_RIE%3E4307460771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861301991&rft_id=info:pmid/&rft_ieee_id=7775088&rfr_iscdi=true