Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews
Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2017-02, Vol.63 (2), p.1120-1129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1129 |
---|---|
container_issue | 2 |
container_start_page | 1120 |
container_title | IEEE transactions on information theory |
container_volume | 63 |
creator | Engelberg, Shlomo Keren, Osnat |
description | Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common) assumption that despite the delays, all signals from the ith transmission arrive at the decoder before any signal from the (i+2)nd transmission arrives is called a no switch assumption. This paper presents a self-synchronizing, zero-latency, zero-error coding scheme that requires no acknowledge and can decode transmissions distorted by an arbitrary number of skews that obey this no switch assumption. The rate associated with the coding scheme provides a lower bound of 0.6942 for the (zero-error) capacity of such a channel. It is further shown that zero-error channel capacity of the channel is upper bounded by 0.7248. Finally, this paper presents bounds on the (zero-error) capacity of a channel for which the number of transmissions that can mix with one another is large. |
doi_str_mv | 10.1109/TIT.2016.2636216 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7775088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7775088</ieee_id><sourcerecordid>4307460771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9ba44d5f6145613b5ac03522a399c9fed9b08fe812925c8d1ab886fa01fce5293</originalsourceid><addsrcrecordid>eNp9kMFLwzAUxoMoOKd3wUvAc2de0qTJsRSdg4EyJx5DmqWss2tn0iL7783c8Ojp8eD73ve-H0K3QCYARD0sZ8sJJSAmVDBBQZyhEXCeJUrw9ByNCAGZqDSVl-gqhE1cUw50hBYL19SmbBwuuu12aGtr-rprA86t70LAr8abpnENzsO-tWvftd0QcLE2beuagD_qfo1zX9a9N36P3z7dd7hGF5Vpgrs5zTF6f3pcFs_J_GU6K_J5YhmoPlGlSdMVr0T8RAArubGEcUoNU8qqyq1USWTlJFBFuZUrMKWUojIEKus4VWyM7o93d777Glzo9aYbfBsjNYUsZTTjkcU_KpAxl4BSEFXkqPpt7V2ld77exkoaiD7w1ZGvPvDVJ77Rcne01M65P3mWZZxIyX4ArBd13w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861301991</pqid></control><display><type>article</type><title>Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews</title><source>IEEE Electronic Library (IEL)</source><creator>Engelberg, Shlomo ; Keren, Osnat</creator><creatorcontrib>Engelberg, Shlomo ; Keren, Osnat</creatorcontrib><description>Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common) assumption that despite the delays, all signals from the ith transmission arrive at the decoder before any signal from the (i+2)nd transmission arrives is called a no switch assumption. This paper presents a self-synchronizing, zero-latency, zero-error coding scheme that requires no acknowledge and can decode transmissions distorted by an arbitrary number of skews that obey this no switch assumption. The rate associated with the coding scheme provides a lower bound of 0.6942 for the (zero-error) capacity of such a channel. It is further shown that zero-error channel capacity of the channel is upper bounded by 0.7248. Finally, this paper presents bounds on the (zero-error) capacity of a channel for which the number of transmissions that can mix with one another is large.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2636216</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asynchronous ; Channel capacity ; Channels ; Clocks ; Coding ; Coding theory ; Communication channels ; Delays ; Encoding ; Errors ; Information theory ; Lower bounds ; parallel asynchronous communications ; Random delays ; Receivers ; Signal processing ; skew ; Switches ; Synchronism ; Wires ; zero-error capacity ; zero-error codes</subject><ispartof>IEEE transactions on information theory, 2017-02, Vol.63 (2), p.1120-1129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2017</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9ba44d5f6145613b5ac03522a399c9fed9b08fe812925c8d1ab886fa01fce5293</citedby><cites>FETCH-LOGICAL-c319t-9ba44d5f6145613b5ac03522a399c9fed9b08fe812925c8d1ab886fa01fce5293</cites><orcidid>0000-0002-3101-9551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7775088$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7775088$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Engelberg, Shlomo</creatorcontrib><creatorcontrib>Keren, Osnat</creatorcontrib><title>Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common) assumption that despite the delays, all signals from the ith transmission arrive at the decoder before any signal from the (i+2)nd transmission arrives is called a no switch assumption. This paper presents a self-synchronizing, zero-latency, zero-error coding scheme that requires no acknowledge and can decode transmissions distorted by an arbitrary number of skews that obey this no switch assumption. The rate associated with the coding scheme provides a lower bound of 0.6942 for the (zero-error) capacity of such a channel. It is further shown that zero-error channel capacity of the channel is upper bounded by 0.7248. Finally, this paper presents bounds on the (zero-error) capacity of a channel for which the number of transmissions that can mix with one another is large.</description><subject>Asynchronous</subject><subject>Channel capacity</subject><subject>Channels</subject><subject>Clocks</subject><subject>Coding</subject><subject>Coding theory</subject><subject>Communication channels</subject><subject>Delays</subject><subject>Encoding</subject><subject>Errors</subject><subject>Information theory</subject><subject>Lower bounds</subject><subject>parallel asynchronous communications</subject><subject>Random delays</subject><subject>Receivers</subject><subject>Signal processing</subject><subject>skew</subject><subject>Switches</subject><subject>Synchronism</subject><subject>Wires</subject><subject>zero-error capacity</subject><subject>zero-error codes</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kMFLwzAUxoMoOKd3wUvAc2de0qTJsRSdg4EyJx5DmqWss2tn0iL7783c8Ojp8eD73ve-H0K3QCYARD0sZ8sJJSAmVDBBQZyhEXCeJUrw9ByNCAGZqDSVl-gqhE1cUw50hBYL19SmbBwuuu12aGtr-rprA86t70LAr8abpnENzsO-tWvftd0QcLE2beuagD_qfo1zX9a9N36P3z7dd7hGF5Vpgrs5zTF6f3pcFs_J_GU6K_J5YhmoPlGlSdMVr0T8RAArubGEcUoNU8qqyq1USWTlJFBFuZUrMKWUojIEKus4VWyM7o93d777Glzo9aYbfBsjNYUsZTTjkcU_KpAxl4BSEFXkqPpt7V2ld77exkoaiD7w1ZGvPvDVJ77Rcne01M65P3mWZZxIyX4ArBd13w</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Engelberg, Shlomo</creator><creator>Keren, Osnat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3101-9551</orcidid></search><sort><creationdate>20170201</creationdate><title>Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews</title><author>Engelberg, Shlomo ; Keren, Osnat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9ba44d5f6145613b5ac03522a399c9fed9b08fe812925c8d1ab886fa01fce5293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asynchronous</topic><topic>Channel capacity</topic><topic>Channels</topic><topic>Clocks</topic><topic>Coding</topic><topic>Coding theory</topic><topic>Communication channels</topic><topic>Delays</topic><topic>Encoding</topic><topic>Errors</topic><topic>Information theory</topic><topic>Lower bounds</topic><topic>parallel asynchronous communications</topic><topic>Random delays</topic><topic>Receivers</topic><topic>Signal processing</topic><topic>skew</topic><topic>Switches</topic><topic>Synchronism</topic><topic>Wires</topic><topic>zero-error capacity</topic><topic>zero-error codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelberg, Shlomo</creatorcontrib><creatorcontrib>Keren, Osnat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Engelberg, Shlomo</au><au>Keren, Osnat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>63</volume><issue>2</issue><spage>1120</spage><epage>1129</epage><pages>1120-1129</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Transmissions across asynchronous communication channels are subject to delay injection attacks, which can cause an arbitrary number of skews. That is, such attacks can cause an arbitrary number of transmitted signals to arrive after the first signal of the next transmission has arrived. The (common) assumption that despite the delays, all signals from the ith transmission arrive at the decoder before any signal from the (i+2)nd transmission arrives is called a no switch assumption. This paper presents a self-synchronizing, zero-latency, zero-error coding scheme that requires no acknowledge and can decode transmissions distorted by an arbitrary number of skews that obey this no switch assumption. The rate associated with the coding scheme provides a lower bound of 0.6942 for the (zero-error) capacity of such a channel. It is further shown that zero-error channel capacity of the channel is upper bounded by 0.7248. Finally, this paper presents bounds on the (zero-error) capacity of a channel for which the number of transmissions that can mix with one another is large.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2636216</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3101-9551</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2017-02, Vol.63 (2), p.1120-1129 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_7775088 |
source | IEEE Electronic Library (IEL) |
subjects | Asynchronous Channel capacity Channels Clocks Coding Coding theory Communication channels Delays Encoding Errors Information theory Lower bounds parallel asynchronous communications Random delays Receivers Signal processing skew Switches Synchronism Wires zero-error capacity zero-error codes |
title | Reliable Communications Across Parallel Asynchronous Channels With Arbitrary Skews |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20Communications%20Across%20Parallel%20Asynchronous%20Channels%20With%20Arbitrary%20Skews&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Engelberg,%20Shlomo&rft.date=2017-02-01&rft.volume=63&rft.issue=2&rft.spage=1120&rft.epage=1129&rft.pages=1120-1129&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2636216&rft_dat=%3Cproquest_RIE%3E4307460771%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861301991&rft_id=info:pmid/&rft_ieee_id=7775088&rfr_iscdi=true |