A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation

In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2017-09, Vol.25 (5), p.1683-1697
Hauptverfasser: Zanni, Lorenzo, Le Boudec, Jean-Yves, Cherkaoui, Rachid, Paolone, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1697
container_issue 5
container_start_page 1683
container_title IEEE transactions on control systems technology
container_volume 25
creator Zanni, Lorenzo
Le Boudec, Jean-Yves
Cherkaoui, Rachid
Paolone, Mario
description In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time.
doi_str_mv 10.1109/TCST.2016.2628716
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7763847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7763847</ieee_id><sourcerecordid>10_1109_TCST_2016_2628716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-6e2f5ba149bab95dc0ad2623cbeda499407a93b521e16ef9369db3c74e8f5cdf3</originalsourceid><addsrcrecordid>eNo9UF1LwzAUDaLgnP4A8SV_IDNpmrTxrZT5gQMHm76WNL2VSNeWJEz2I_zPpmzs4XI_OOfcew9C94wuGKPqcVtutouEMrlIZJJnTF6gGRMiJzSX4jLWVHIiBZfX6Mb7H0pZKpJshv4KvHbQWBPs0JOlc4PD5bDXzureAF76YHc6xGEbo2j0GOwe8LvudrrHz7YL4Gz_jW2PNwFG8qXdYerXbjDgPfgnXIxjZ42e9HEY8Hr4BUc2Bx9gFzk6nJdEwC26anXn4e6U5-jzebktX8nq4-WtLFbEJFIEIiFpRa1ZqmpdK9EYqpv4Njc1NDpVKqWZVrwWCQMmoVVcqqbmJkshb4VpWj5H7Khr3OC9g7YaXTzBHSpGq8nPavKzmvysTn5GzsORYwHgjM8yyfM04__BzXVt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Zanni, Lorenzo ; Le Boudec, Jean-Yves ; Cherkaoui, Rachid ; Paolone, Mario</creator><creatorcontrib>Zanni, Lorenzo ; Le Boudec, Jean-Yves ; Cherkaoui, Rachid ; Paolone, Mario</creatorcontrib><description>In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2016.2628716</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive Kalman filter (AKF) ; Correlation ; covariance estimation ; Covariance matrices ; Estimation ; Kalman filters ; Mathematical model ; phasor measurement unit (PMU) ; power systems ; state estimation ; step processes ; Technological innovation</subject><ispartof>IEEE transactions on control systems technology, 2017-09, Vol.25 (5), p.1683-1697</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-6e2f5ba149bab95dc0ad2623cbeda499407a93b521e16ef9369db3c74e8f5cdf3</citedby><cites>FETCH-LOGICAL-c265t-6e2f5ba149bab95dc0ad2623cbeda499407a93b521e16ef9369db3c74e8f5cdf3</cites><orcidid>0000-0003-2619-5769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7763847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7763847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zanni, Lorenzo</creatorcontrib><creatorcontrib>Le Boudec, Jean-Yves</creatorcontrib><creatorcontrib>Cherkaoui, Rachid</creatorcontrib><creatorcontrib>Paolone, Mario</creatorcontrib><title>A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time.</description><subject>Adaptation models</subject><subject>Adaptive Kalman filter (AKF)</subject><subject>Correlation</subject><subject>covariance estimation</subject><subject>Covariance matrices</subject><subject>Estimation</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>phasor measurement unit (PMU)</subject><subject>power systems</subject><subject>state estimation</subject><subject>step processes</subject><subject>Technological innovation</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAUDaLgnP4A8SV_IDNpmrTxrZT5gQMHm76WNL2VSNeWJEz2I_zPpmzs4XI_OOfcew9C94wuGKPqcVtutouEMrlIZJJnTF6gGRMiJzSX4jLWVHIiBZfX6Mb7H0pZKpJshv4KvHbQWBPs0JOlc4PD5bDXzureAF76YHc6xGEbo2j0GOwe8LvudrrHz7YL4Gz_jW2PNwFG8qXdYerXbjDgPfgnXIxjZ42e9HEY8Hr4BUc2Bx9gFzk6nJdEwC26anXn4e6U5-jzebktX8nq4-WtLFbEJFIEIiFpRa1ZqmpdK9EYqpv4Njc1NDpVKqWZVrwWCQMmoVVcqqbmJkshb4VpWj5H7Khr3OC9g7YaXTzBHSpGq8nPavKzmvysTn5GzsORYwHgjM8yyfM04__BzXVt</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Zanni, Lorenzo</creator><creator>Le Boudec, Jean-Yves</creator><creator>Cherkaoui, Rachid</creator><creator>Paolone, Mario</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2619-5769</orcidid></search><sort><creationdate>201709</creationdate><title>A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation</title><author>Zanni, Lorenzo ; Le Boudec, Jean-Yves ; Cherkaoui, Rachid ; Paolone, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-6e2f5ba149bab95dc0ad2623cbeda499407a93b521e16ef9369db3c74e8f5cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Adaptive Kalman filter (AKF)</topic><topic>Correlation</topic><topic>covariance estimation</topic><topic>Covariance matrices</topic><topic>Estimation</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>phasor measurement unit (PMU)</topic><topic>power systems</topic><topic>state estimation</topic><topic>step processes</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanni, Lorenzo</creatorcontrib><creatorcontrib>Le Boudec, Jean-Yves</creatorcontrib><creatorcontrib>Cherkaoui, Rachid</creatorcontrib><creatorcontrib>Paolone, Mario</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zanni, Lorenzo</au><au>Le Boudec, Jean-Yves</au><au>Cherkaoui, Rachid</au><au>Paolone, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2017-09</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1683</spage><epage>1697</epage><pages>1683-1697</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2016.2628716</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2619-5769</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2017-09, Vol.25 (5), p.1683-1697
issn 1063-6536
1558-0865
language eng
recordid cdi_ieee_primary_7763847
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive Kalman filter (AKF)
Correlation
covariance estimation
Covariance matrices
Estimation
Kalman filters
Mathematical model
phasor measurement unit (PMU)
power systems
state estimation
step processes
Technological innovation
title A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Prediction-Error%20Covariance%20Estimator%20for%20Adaptive%20Kalman%20Filtering%20in%20Step-Varying%20Processes:%20Application%20to%20Power-System%20State%20Estimation&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Zanni,%20Lorenzo&rft.date=2017-09&rft.volume=25&rft.issue=5&rft.spage=1683&rft.epage=1697&rft.pages=1683-1697&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2016.2628716&rft_dat=%3Ccrossref_RIE%3E10_1109_TCST_2016_2628716%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7763847&rfr_iscdi=true