A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation
In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2017-09, Vol.25 (5), p.1683-1697 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1697 |
---|---|
container_issue | 5 |
container_start_page | 1683 |
container_title | IEEE transactions on control systems technology |
container_volume | 25 |
creator | Zanni, Lorenzo Le Boudec, Jean-Yves Cherkaoui, Rachid Paolone, Mario |
description | In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time. |
doi_str_mv | 10.1109/TCST.2016.2628716 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7763847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7763847</ieee_id><sourcerecordid>10_1109_TCST_2016_2628716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-6e2f5ba149bab95dc0ad2623cbeda499407a93b521e16ef9369db3c74e8f5cdf3</originalsourceid><addsrcrecordid>eNo9UF1LwzAUDaLgnP4A8SV_IDNpmrTxrZT5gQMHm76WNL2VSNeWJEz2I_zPpmzs4XI_OOfcew9C94wuGKPqcVtutouEMrlIZJJnTF6gGRMiJzSX4jLWVHIiBZfX6Mb7H0pZKpJshv4KvHbQWBPs0JOlc4PD5bDXzureAF76YHc6xGEbo2j0GOwe8LvudrrHz7YL4Gz_jW2PNwFG8qXdYerXbjDgPfgnXIxjZ42e9HEY8Hr4BUc2Bx9gFzk6nJdEwC26anXn4e6U5-jzebktX8nq4-WtLFbEJFIEIiFpRa1ZqmpdK9EYqpv4Njc1NDpVKqWZVrwWCQMmoVVcqqbmJkshb4VpWj5H7Khr3OC9g7YaXTzBHSpGq8nPavKzmvysTn5GzsORYwHgjM8yyfM04__BzXVt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation</title><source>IEEE Electronic Library (IEL)</source><creator>Zanni, Lorenzo ; Le Boudec, Jean-Yves ; Cherkaoui, Rachid ; Paolone, Mario</creator><creatorcontrib>Zanni, Lorenzo ; Le Boudec, Jean-Yves ; Cherkaoui, Rachid ; Paolone, Mario</creatorcontrib><description>In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2016.2628716</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Adaptive Kalman filter (AKF) ; Correlation ; covariance estimation ; Covariance matrices ; Estimation ; Kalman filters ; Mathematical model ; phasor measurement unit (PMU) ; power systems ; state estimation ; step processes ; Technological innovation</subject><ispartof>IEEE transactions on control systems technology, 2017-09, Vol.25 (5), p.1683-1697</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-6e2f5ba149bab95dc0ad2623cbeda499407a93b521e16ef9369db3c74e8f5cdf3</citedby><cites>FETCH-LOGICAL-c265t-6e2f5ba149bab95dc0ad2623cbeda499407a93b521e16ef9369db3c74e8f5cdf3</cites><orcidid>0000-0003-2619-5769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7763847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7763847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zanni, Lorenzo</creatorcontrib><creatorcontrib>Le Boudec, Jean-Yves</creatorcontrib><creatorcontrib>Cherkaoui, Rachid</creatorcontrib><creatorcontrib>Paolone, Mario</creatorcontrib><title>A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time.</description><subject>Adaptation models</subject><subject>Adaptive Kalman filter (AKF)</subject><subject>Correlation</subject><subject>covariance estimation</subject><subject>Covariance matrices</subject><subject>Estimation</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>phasor measurement unit (PMU)</subject><subject>power systems</subject><subject>state estimation</subject><subject>step processes</subject><subject>Technological innovation</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAUDaLgnP4A8SV_IDNpmrTxrZT5gQMHm76WNL2VSNeWJEz2I_zPpmzs4XI_OOfcew9C94wuGKPqcVtutouEMrlIZJJnTF6gGRMiJzSX4jLWVHIiBZfX6Mb7H0pZKpJshv4KvHbQWBPs0JOlc4PD5bDXzureAF76YHc6xGEbo2j0GOwe8LvudrrHz7YL4Gz_jW2PNwFG8qXdYerXbjDgPfgnXIxjZ42e9HEY8Hr4BUc2Bx9gFzk6nJdEwC26anXn4e6U5-jzebktX8nq4-WtLFbEJFIEIiFpRa1ZqmpdK9EYqpv4Njc1NDpVKqWZVrwWCQMmoVVcqqbmJkshb4VpWj5H7Khr3OC9g7YaXTzBHSpGq8nPavKzmvysTn5GzsORYwHgjM8yyfM04__BzXVt</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Zanni, Lorenzo</creator><creator>Le Boudec, Jean-Yves</creator><creator>Cherkaoui, Rachid</creator><creator>Paolone, Mario</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2619-5769</orcidid></search><sort><creationdate>201709</creationdate><title>A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation</title><author>Zanni, Lorenzo ; Le Boudec, Jean-Yves ; Cherkaoui, Rachid ; Paolone, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-6e2f5ba149bab95dc0ad2623cbeda499407a93b521e16ef9369db3c74e8f5cdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation models</topic><topic>Adaptive Kalman filter (AKF)</topic><topic>Correlation</topic><topic>covariance estimation</topic><topic>Covariance matrices</topic><topic>Estimation</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>phasor measurement unit (PMU)</topic><topic>power systems</topic><topic>state estimation</topic><topic>step processes</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanni, Lorenzo</creatorcontrib><creatorcontrib>Le Boudec, Jean-Yves</creatorcontrib><creatorcontrib>Cherkaoui, Rachid</creatorcontrib><creatorcontrib>Paolone, Mario</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zanni, Lorenzo</au><au>Le Boudec, Jean-Yves</au><au>Cherkaoui, Rachid</au><au>Paolone, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2017-09</date><risdate>2017</risdate><volume>25</volume><issue>5</issue><spage>1683</spage><epage>1697</epage><pages>1683-1697</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>In this paper, we present a new method for the estimation of the prediction-error covariances of a Kalman filter (KF), which is suitable for step-varying processes. The method uses a series of past innovations (i.e., the difference between the upcoming measurement set and the KF predicted state) to estimate the prediction-error covariance matrix by means of a constrained convex optimization problem. The latter is designed to ensure the symmetry and the positive semidefiniteness of the estimated covariance matrix, so that the KF numerical stability is guaranteed. Our proposed method is straightforward to implement and requires the setting of one parameter only, i.e., the number of past innovations to be considered. It relies on the knowledge of a linear and stationary measurement model. The ability of the method to track state step-variations is validated in ideal conditions for a random-walk process model and for the case of power-system state estimation. The proposed approach is also compared with other methods that estimate the KF stochastic parameters and with the well-known linear weighted least squares. The comparison is given in terms of both accuracy and computational time.</abstract><pub>IEEE</pub><doi>10.1109/TCST.2016.2628716</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2619-5769</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2017-09, Vol.25 (5), p.1683-1697 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_7763847 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adaptive Kalman filter (AKF) Correlation covariance estimation Covariance matrices Estimation Kalman filters Mathematical model phasor measurement unit (PMU) power systems state estimation step processes Technological innovation |
title | A Prediction-Error Covariance Estimator for Adaptive Kalman Filtering in Step-Varying Processes: Application to Power-System State Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Prediction-Error%20Covariance%20Estimator%20for%20Adaptive%20Kalman%20Filtering%20in%20Step-Varying%20Processes:%20Application%20to%20Power-System%20State%20Estimation&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Zanni,%20Lorenzo&rft.date=2017-09&rft.volume=25&rft.issue=5&rft.spage=1683&rft.epage=1697&rft.pages=1683-1697&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2016.2628716&rft_dat=%3Ccrossref_RIE%3E10_1109_TCST_2016_2628716%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7763847&rfr_iscdi=true |