Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications
In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing...
Gespeichert in:
Veröffentlicht in: | IEEE access 2016, Vol.4, p.8879-8887 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8887 |
---|---|
container_issue | |
container_start_page | 8879 |
container_title | IEEE access |
container_volume | 4 |
creator | Siddique, Kamran Akhtar, Zahid Yoon, Edward J. Jeong, Young-Sik Dasgupta, Dipankar Kim, Yangwoo |
description | In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing frameworks, particularly Apache Hama, a top level project under the Apache Software Foundation, based on bulk synchronous parallel processing. The comparative studies and empirical evaluations performed in this paper reveal Hama's potential and efficacy in big data applications. In particular, we present a benchmark evaluation of Hama's graph package and Apache Giraph using PageRank algorithm. The results show that the performance of Hama is better than Giraph in terms of scalability and computational speed. However, despite great progress, a number of challenging issues continue to inhibit the full potential of Hama to be used at large scale. This paper also describes these challenges, analyzes solutions proposed to overcome them, and highlights research opportunities. |
doi_str_mv | 10.1109/ACCESS.2016.2631549 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7752866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7752866</ieee_id><doaj_id>oai_doaj_org_article_7a6b19da43b247faa078acb75b2bed3c</doaj_id><sourcerecordid>2455948524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-542acdc02c150eb44753621b24fe76b4266dc9a6d55e218c6a445bfb725ee0963</originalsourceid><addsrcrecordid>eNpNUV1LxDAQLKKgqL_Al4DPdyZpPlrfaj0_QFA4fY6bdHv2bJuatoj_3p4VcV92GWZmByaKzhhdMkbTiyzPV-v1klOmllzFTIp0LzriTKWLWMZq_999GJ32_ZZOk0yQ1EfRa9aBe0NyBw1ckqwlqwbDpmo35Gqs38n6q3Vvwbd-7MkTBKhrrEnum24cdpybAA1--vBOSh_IVbUh1zAAybqurhwMlW_7k-ighLrH0999HL3crJ7zu8XD4-19nj0snKDJsJCCgysc5Y5JilYIPcXlzHJRolZWcKUKl4IqpETOEqdACGlLq7lEpKmKj6P72bfwsDVdqBoIX8ZDZX4AHzYGwlC5Go0GZVlagIgne10CUJ2As1pabrGI3eR1Pnt1wX-M2A9m68fQTvENF1KmIpFcTKx4Zrng-z5g-feVUbNrxszNmF0z5reZSXU2qypE_FNoLXmiVPwNFCOJaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455948524</pqid></control><display><type>article</type><title>Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Siddique, Kamran ; Akhtar, Zahid ; Yoon, Edward J. ; Jeong, Young-Sik ; Dasgupta, Dipankar ; Kim, Yangwoo</creator><creatorcontrib>Siddique, Kamran ; Akhtar, Zahid ; Yoon, Edward J. ; Jeong, Young-Sik ; Dasgupta, Dipankar ; Kim, Yangwoo</creatorcontrib><description>In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing frameworks, particularly Apache Hama, a top level project under the Apache Software Foundation, based on bulk synchronous parallel processing. The comparative studies and empirical evaluations performed in this paper reveal Hama's potential and efficacy in big data applications. In particular, we present a benchmark evaluation of Hama's graph package and Apache Giraph using PageRank algorithm. The results show that the performance of Hama is better than Giraph in terms of scalability and computational speed. However, despite great progress, a number of challenging issues continue to inhibit the full potential of Hama to be used at large scale. This paper also describes these challenges, analyzes solutions proposed to overcome them, and highlights research opportunities.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2016.2631549</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Apache Hama ; Big Data ; BSP ; bulk synchronous parallel ; Comparative studies ; Computational modeling ; Computer architecture ; Computer networks ; Data processing ; distributed computing ; Distributed processing ; Empirical analysis ; Giraph ; Hadoop ; MapReduce ; Parallel processing ; Programming ; Search engines ; Servers ; Spark ; Synchronous systems</subject><ispartof>IEEE access, 2016, Vol.4, p.8879-8887</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-542acdc02c150eb44753621b24fe76b4266dc9a6d55e218c6a445bfb725ee0963</citedby><cites>FETCH-LOGICAL-c408t-542acdc02c150eb44753621b24fe76b4266dc9a6d55e218c6a445bfb725ee0963</cites><orcidid>0000-0002-4038-3267 ; 0000-0002-7421-1105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7752866$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Siddique, Kamran</creatorcontrib><creatorcontrib>Akhtar, Zahid</creatorcontrib><creatorcontrib>Yoon, Edward J.</creatorcontrib><creatorcontrib>Jeong, Young-Sik</creatorcontrib><creatorcontrib>Dasgupta, Dipankar</creatorcontrib><creatorcontrib>Kim, Yangwoo</creatorcontrib><title>Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing frameworks, particularly Apache Hama, a top level project under the Apache Software Foundation, based on bulk synchronous parallel processing. The comparative studies and empirical evaluations performed in this paper reveal Hama's potential and efficacy in big data applications. In particular, we present a benchmark evaluation of Hama's graph package and Apache Giraph using PageRank algorithm. The results show that the performance of Hama is better than Giraph in terms of scalability and computational speed. However, despite great progress, a number of challenging issues continue to inhibit the full potential of Hama to be used at large scale. This paper also describes these challenges, analyzes solutions proposed to overcome them, and highlights research opportunities.</description><subject>Algorithms</subject><subject>Apache Hama</subject><subject>Big Data</subject><subject>BSP</subject><subject>bulk synchronous parallel</subject><subject>Comparative studies</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Data processing</subject><subject>distributed computing</subject><subject>Distributed processing</subject><subject>Empirical analysis</subject><subject>Giraph</subject><subject>Hadoop</subject><subject>MapReduce</subject><subject>Parallel processing</subject><subject>Programming</subject><subject>Search engines</subject><subject>Servers</subject><subject>Spark</subject><subject>Synchronous systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LxDAQLKKgqL_Al4DPdyZpPlrfaj0_QFA4fY6bdHv2bJuatoj_3p4VcV92GWZmByaKzhhdMkbTiyzPV-v1klOmllzFTIp0LzriTKWLWMZq_999GJ32_ZZOk0yQ1EfRa9aBe0NyBw1ckqwlqwbDpmo35Gqs38n6q3Vvwbd-7MkTBKhrrEnum24cdpybAA1--vBOSh_IVbUh1zAAybqurhwMlW_7k-ighLrH0999HL3crJ7zu8XD4-19nj0snKDJsJCCgysc5Y5JilYIPcXlzHJRolZWcKUKl4IqpETOEqdACGlLq7lEpKmKj6P72bfwsDVdqBoIX8ZDZX4AHzYGwlC5Go0GZVlagIgne10CUJ2As1pabrGI3eR1Pnt1wX-M2A9m68fQTvENF1KmIpFcTKx4Zrng-z5g-feVUbNrxszNmF0z5reZSXU2qypE_FNoLXmiVPwNFCOJaA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Siddique, Kamran</creator><creator>Akhtar, Zahid</creator><creator>Yoon, Edward J.</creator><creator>Jeong, Young-Sik</creator><creator>Dasgupta, Dipankar</creator><creator>Kim, Yangwoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4038-3267</orcidid><orcidid>https://orcid.org/0000-0002-7421-1105</orcidid></search><sort><creationdate>2016</creationdate><title>Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications</title><author>Siddique, Kamran ; Akhtar, Zahid ; Yoon, Edward J. ; Jeong, Young-Sik ; Dasgupta, Dipankar ; Kim, Yangwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-542acdc02c150eb44753621b24fe76b4266dc9a6d55e218c6a445bfb725ee0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Apache Hama</topic><topic>Big Data</topic><topic>BSP</topic><topic>bulk synchronous parallel</topic><topic>Comparative studies</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Data processing</topic><topic>distributed computing</topic><topic>Distributed processing</topic><topic>Empirical analysis</topic><topic>Giraph</topic><topic>Hadoop</topic><topic>MapReduce</topic><topic>Parallel processing</topic><topic>Programming</topic><topic>Search engines</topic><topic>Servers</topic><topic>Spark</topic><topic>Synchronous systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddique, Kamran</creatorcontrib><creatorcontrib>Akhtar, Zahid</creatorcontrib><creatorcontrib>Yoon, Edward J.</creatorcontrib><creatorcontrib>Jeong, Young-Sik</creatorcontrib><creatorcontrib>Dasgupta, Dipankar</creatorcontrib><creatorcontrib>Kim, Yangwoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddique, Kamran</au><au>Akhtar, Zahid</au><au>Yoon, Edward J.</au><au>Jeong, Young-Sik</au><au>Dasgupta, Dipankar</au><au>Kim, Yangwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2016</date><risdate>2016</risdate><volume>4</volume><spage>8879</spage><epage>8887</epage><pages>8879-8887</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing frameworks, particularly Apache Hama, a top level project under the Apache Software Foundation, based on bulk synchronous parallel processing. The comparative studies and empirical evaluations performed in this paper reveal Hama's potential and efficacy in big data applications. In particular, we present a benchmark evaluation of Hama's graph package and Apache Giraph using PageRank algorithm. The results show that the performance of Hama is better than Giraph in terms of scalability and computational speed. However, despite great progress, a number of challenging issues continue to inhibit the full potential of Hama to be used at large scale. This paper also describes these challenges, analyzes solutions proposed to overcome them, and highlights research opportunities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2016.2631549</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4038-3267</orcidid><orcidid>https://orcid.org/0000-0002-7421-1105</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2016, Vol.4, p.8879-8887 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_7752866 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Apache Hama Big Data BSP bulk synchronous parallel Comparative studies Computational modeling Computer architecture Computer networks Data processing distributed computing Distributed processing Empirical analysis Giraph Hadoop MapReduce Parallel processing Programming Search engines Servers Spark Synchronous systems |
title | Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apache%20Hama:%20An%20Emerging%20Bulk%20Synchronous%20Parallel%20Computing%20Framework%20for%20Big%20Data%20Applications&rft.jtitle=IEEE%20access&rft.au=Siddique,%20Kamran&rft.date=2016&rft.volume=4&rft.spage=8879&rft.epage=8887&rft.pages=8879-8887&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2016.2631549&rft_dat=%3Cproquest_ieee_%3E2455948524%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455948524&rft_id=info:pmid/&rft_ieee_id=7752866&rft_doaj_id=oai_doaj_org_article_7a6b19da43b247faa078acb75b2bed3c&rfr_iscdi=true |