Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications

In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2016, Vol.4, p.8879-8887
Hauptverfasser: Siddique, Kamran, Akhtar, Zahid, Yoon, Edward J., Jeong, Young-Sik, Dasgupta, Dipankar, Kim, Yangwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8887
container_issue
container_start_page 8879
container_title IEEE access
container_volume 4
creator Siddique, Kamran
Akhtar, Zahid
Yoon, Edward J.
Jeong, Young-Sik
Dasgupta, Dipankar
Kim, Yangwoo
description In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing frameworks, particularly Apache Hama, a top level project under the Apache Software Foundation, based on bulk synchronous parallel processing. The comparative studies and empirical evaluations performed in this paper reveal Hama's potential and efficacy in big data applications. In particular, we present a benchmark evaluation of Hama's graph package and Apache Giraph using PageRank algorithm. The results show that the performance of Hama is better than Giraph in terms of scalability and computational speed. However, despite great progress, a number of challenging issues continue to inhibit the full potential of Hama to be used at large scale. This paper also describes these challenges, analyzes solutions proposed to overcome them, and highlights research opportunities.
doi_str_mv 10.1109/ACCESS.2016.2631549
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_7752866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7752866</ieee_id><doaj_id>oai_doaj_org_article_7a6b19da43b247faa078acb75b2bed3c</doaj_id><sourcerecordid>2455948524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-542acdc02c150eb44753621b24fe76b4266dc9a6d55e218c6a445bfb725ee0963</originalsourceid><addsrcrecordid>eNpNUV1LxDAQLKKgqL_Al4DPdyZpPlrfaj0_QFA4fY6bdHv2bJuatoj_3p4VcV92GWZmByaKzhhdMkbTiyzPV-v1klOmllzFTIp0LzriTKWLWMZq_999GJ32_ZZOk0yQ1EfRa9aBe0NyBw1ckqwlqwbDpmo35Gqs38n6q3Vvwbd-7MkTBKhrrEnum24cdpybAA1--vBOSh_IVbUh1zAAybqurhwMlW_7k-ighLrH0999HL3crJ7zu8XD4-19nj0snKDJsJCCgysc5Y5JilYIPcXlzHJRolZWcKUKl4IqpETOEqdACGlLq7lEpKmKj6P72bfwsDVdqBoIX8ZDZX4AHzYGwlC5Go0GZVlagIgne10CUJ2As1pabrGI3eR1Pnt1wX-M2A9m68fQTvENF1KmIpFcTKx4Zrng-z5g-feVUbNrxszNmF0z5reZSXU2qypE_FNoLXmiVPwNFCOJaA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455948524</pqid></control><display><type>article</type><title>Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Siddique, Kamran ; Akhtar, Zahid ; Yoon, Edward J. ; Jeong, Young-Sik ; Dasgupta, Dipankar ; Kim, Yangwoo</creator><creatorcontrib>Siddique, Kamran ; Akhtar, Zahid ; Yoon, Edward J. ; Jeong, Young-Sik ; Dasgupta, Dipankar ; Kim, Yangwoo</creatorcontrib><description>In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing frameworks, particularly Apache Hama, a top level project under the Apache Software Foundation, based on bulk synchronous parallel processing. The comparative studies and empirical evaluations performed in this paper reveal Hama's potential and efficacy in big data applications. In particular, we present a benchmark evaluation of Hama's graph package and Apache Giraph using PageRank algorithm. The results show that the performance of Hama is better than Giraph in terms of scalability and computational speed. However, despite great progress, a number of challenging issues continue to inhibit the full potential of Hama to be used at large scale. This paper also describes these challenges, analyzes solutions proposed to overcome them, and highlights research opportunities.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2016.2631549</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Apache Hama ; Big Data ; BSP ; bulk synchronous parallel ; Comparative studies ; Computational modeling ; Computer architecture ; Computer networks ; Data processing ; distributed computing ; Distributed processing ; Empirical analysis ; Giraph ; Hadoop ; MapReduce ; Parallel processing ; Programming ; Search engines ; Servers ; Spark ; Synchronous systems</subject><ispartof>IEEE access, 2016, Vol.4, p.8879-8887</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-542acdc02c150eb44753621b24fe76b4266dc9a6d55e218c6a445bfb725ee0963</citedby><cites>FETCH-LOGICAL-c408t-542acdc02c150eb44753621b24fe76b4266dc9a6d55e218c6a445bfb725ee0963</cites><orcidid>0000-0002-4038-3267 ; 0000-0002-7421-1105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7752866$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Siddique, Kamran</creatorcontrib><creatorcontrib>Akhtar, Zahid</creatorcontrib><creatorcontrib>Yoon, Edward J.</creatorcontrib><creatorcontrib>Jeong, Young-Sik</creatorcontrib><creatorcontrib>Dasgupta, Dipankar</creatorcontrib><creatorcontrib>Kim, Yangwoo</creatorcontrib><title>Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description>In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing frameworks, particularly Apache Hama, a top level project under the Apache Software Foundation, based on bulk synchronous parallel processing. The comparative studies and empirical evaluations performed in this paper reveal Hama's potential and efficacy in big data applications. In particular, we present a benchmark evaluation of Hama's graph package and Apache Giraph using PageRank algorithm. The results show that the performance of Hama is better than Giraph in terms of scalability and computational speed. However, despite great progress, a number of challenging issues continue to inhibit the full potential of Hama to be used at large scale. This paper also describes these challenges, analyzes solutions proposed to overcome them, and highlights research opportunities.</description><subject>Algorithms</subject><subject>Apache Hama</subject><subject>Big Data</subject><subject>BSP</subject><subject>bulk synchronous parallel</subject><subject>Comparative studies</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer networks</subject><subject>Data processing</subject><subject>distributed computing</subject><subject>Distributed processing</subject><subject>Empirical analysis</subject><subject>Giraph</subject><subject>Hadoop</subject><subject>MapReduce</subject><subject>Parallel processing</subject><subject>Programming</subject><subject>Search engines</subject><subject>Servers</subject><subject>Spark</subject><subject>Synchronous systems</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LxDAQLKKgqL_Al4DPdyZpPlrfaj0_QFA4fY6bdHv2bJuatoj_3p4VcV92GWZmByaKzhhdMkbTiyzPV-v1klOmllzFTIp0LzriTKWLWMZq_999GJ32_ZZOk0yQ1EfRa9aBe0NyBw1ckqwlqwbDpmo35Gqs38n6q3Vvwbd-7MkTBKhrrEnum24cdpybAA1--vBOSh_IVbUh1zAAybqurhwMlW_7k-ighLrH0999HL3crJ7zu8XD4-19nj0snKDJsJCCgysc5Y5JilYIPcXlzHJRolZWcKUKl4IqpETOEqdACGlLq7lEpKmKj6P72bfwsDVdqBoIX8ZDZX4AHzYGwlC5Go0GZVlagIgne10CUJ2As1pabrGI3eR1Pnt1wX-M2A9m68fQTvENF1KmIpFcTKx4Zrng-z5g-feVUbNrxszNmF0z5reZSXU2qypE_FNoLXmiVPwNFCOJaA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Siddique, Kamran</creator><creator>Akhtar, Zahid</creator><creator>Yoon, Edward J.</creator><creator>Jeong, Young-Sik</creator><creator>Dasgupta, Dipankar</creator><creator>Kim, Yangwoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4038-3267</orcidid><orcidid>https://orcid.org/0000-0002-7421-1105</orcidid></search><sort><creationdate>2016</creationdate><title>Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications</title><author>Siddique, Kamran ; Akhtar, Zahid ; Yoon, Edward J. ; Jeong, Young-Sik ; Dasgupta, Dipankar ; Kim, Yangwoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-542acdc02c150eb44753621b24fe76b4266dc9a6d55e218c6a445bfb725ee0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Apache Hama</topic><topic>Big Data</topic><topic>BSP</topic><topic>bulk synchronous parallel</topic><topic>Comparative studies</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer networks</topic><topic>Data processing</topic><topic>distributed computing</topic><topic>Distributed processing</topic><topic>Empirical analysis</topic><topic>Giraph</topic><topic>Hadoop</topic><topic>MapReduce</topic><topic>Parallel processing</topic><topic>Programming</topic><topic>Search engines</topic><topic>Servers</topic><topic>Spark</topic><topic>Synchronous systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddique, Kamran</creatorcontrib><creatorcontrib>Akhtar, Zahid</creatorcontrib><creatorcontrib>Yoon, Edward J.</creatorcontrib><creatorcontrib>Jeong, Young-Sik</creatorcontrib><creatorcontrib>Dasgupta, Dipankar</creatorcontrib><creatorcontrib>Kim, Yangwoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddique, Kamran</au><au>Akhtar, Zahid</au><au>Yoon, Edward J.</au><au>Jeong, Young-Sik</au><au>Dasgupta, Dipankar</au><au>Kim, Yangwoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2016</date><risdate>2016</risdate><volume>4</volume><spage>8879</spage><epage>8887</epage><pages>8879-8887</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In today's highly intertwined network society, the demand for big data processing frameworks is continuously growing. The widely adopted model to process big data is parallel and distributed computing. This paper documents the significant progress achieved in the field of distributed computing frameworks, particularly Apache Hama, a top level project under the Apache Software Foundation, based on bulk synchronous parallel processing. The comparative studies and empirical evaluations performed in this paper reveal Hama's potential and efficacy in big data applications. In particular, we present a benchmark evaluation of Hama's graph package and Apache Giraph using PageRank algorithm. The results show that the performance of Hama is better than Giraph in terms of scalability and computational speed. However, despite great progress, a number of challenging issues continue to inhibit the full potential of Hama to be used at large scale. This paper also describes these challenges, analyzes solutions proposed to overcome them, and highlights research opportunities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2016.2631549</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4038-3267</orcidid><orcidid>https://orcid.org/0000-0002-7421-1105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2016, Vol.4, p.8879-8887
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_7752866
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Apache Hama
Big Data
BSP
bulk synchronous parallel
Comparative studies
Computational modeling
Computer architecture
Computer networks
Data processing
distributed computing
Distributed processing
Empirical analysis
Giraph
Hadoop
MapReduce
Parallel processing
Programming
Search engines
Servers
Spark
Synchronous systems
title Apache Hama: An Emerging Bulk Synchronous Parallel Computing Framework for Big Data Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apache%20Hama:%20An%20Emerging%20Bulk%20Synchronous%20Parallel%20Computing%20Framework%20for%20Big%20Data%20Applications&rft.jtitle=IEEE%20access&rft.au=Siddique,%20Kamran&rft.date=2016&rft.volume=4&rft.spage=8879&rft.epage=8887&rft.pages=8879-8887&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2016.2631549&rft_dat=%3Cproquest_ieee_%3E2455948524%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455948524&rft_id=info:pmid/&rft_ieee_id=7752866&rft_doaj_id=oai_doaj_org_article_7a6b19da43b247faa078acb75b2bed3c&rfr_iscdi=true