Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence
Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demon...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2003 vol.4 |
---|---|
container_issue | |
container_start_page | 2001 |
container_title | |
container_volume | 4 |
creator | Chitroub, S. Hamiti, R. Allal, S. Houacine, A. Sansal, B. |
description | Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demonstrates the feasibility of using the theory of evidence to merge and classify this type of image. The data are modeled using the generalized K distribution. The suggested methodology is evaluating using SAR images provided by SIR-C. |
doi_str_mv | 10.1109/IGARSS.1999.775013 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_775013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>775013</ieee_id><sourcerecordid>775013</sourcerecordid><originalsourceid>FETCH-ieee_primary_7750133</originalsourceid><addsrcrecordid>eNp9j81uwjAQhC0hJCjwApz2BUjtJsHkiFD_1BvpHZlkTbfKH944Ut6-LvTcuYxGo_mkEWKtZKSUzB7fX_fHPI9UlmWR1qlU8UQ8SL2Tcfok9XYmVszfMihJE71L5mLIfYduIMYSrGdqm01RGWayVJg-RGgt1L7qyTq8emyKEbq2Mo5q7B0VkO-PQLW5IEOYNxf4gJI4VGd_m5umhP4LWzf-knCgMjBwKabWVIyrP1-I9cvz5-FtQ4h46gLduPF0fxD_W_4A5AhOEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chitroub, S. ; Hamiti, R. ; Allal, S. ; Houacine, A. ; Sansal, B.</creator><creatorcontrib>Chitroub, S. ; Hamiti, R. ; Allal, S. ; Houacine, A. ; Sansal, B.</creatorcontrib><description>Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demonstrates the feasibility of using the theory of evidence to merge and classify this type of image. The data are modeled using the generalized K distribution. The suggested methodology is evaluating using SAR images provided by SIR-C.</description><identifier>ISBN: 0780352076</identifier><identifier>ISBN: 9780780352070</identifier><identifier>DOI: 10.1109/IGARSS.1999.775013</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Backscatter ; Distributed computing ; Image sensors ; Laboratories ; Layout ; Probability ; Remote sensing ; Sensor phenomena and characterization ; Speckle</subject><ispartof>IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), 1999, Vol.4, p.2001-2003 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/775013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/775013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chitroub, S.</creatorcontrib><creatorcontrib>Hamiti, R.</creatorcontrib><creatorcontrib>Allal, S.</creatorcontrib><creatorcontrib>Houacine, A.</creatorcontrib><creatorcontrib>Sansal, B.</creatorcontrib><title>Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence</title><title>IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)</title><addtitle>IGARSS</addtitle><description>Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demonstrates the feasibility of using the theory of evidence to merge and classify this type of image. The data are modeled using the generalized K distribution. The suggested methodology is evaluating using SAR images provided by SIR-C.</description><subject>Application software</subject><subject>Backscatter</subject><subject>Distributed computing</subject><subject>Image sensors</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Probability</subject><subject>Remote sensing</subject><subject>Sensor phenomena and characterization</subject><subject>Speckle</subject><isbn>0780352076</isbn><isbn>9780780352070</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j81uwjAQhC0hJCjwApz2BUjtJsHkiFD_1BvpHZlkTbfKH944Ut6-LvTcuYxGo_mkEWKtZKSUzB7fX_fHPI9UlmWR1qlU8UQ8SL2Tcfok9XYmVszfMihJE71L5mLIfYduIMYSrGdqm01RGWayVJg-RGgt1L7qyTq8emyKEbq2Mo5q7B0VkO-PQLW5IEOYNxf4gJI4VGd_m5umhP4LWzf-knCgMjBwKabWVIyrP1-I9cvz5-FtQ4h46gLduPF0fxD_W_4A5AhOEw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Chitroub, S.</creator><creator>Hamiti, R.</creator><creator>Allal, S.</creator><creator>Houacine, A.</creator><creator>Sansal, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence</title><author>Chitroub, S. ; Hamiti, R. ; Allal, S. ; Houacine, A. ; Sansal, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_7750133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Application software</topic><topic>Backscatter</topic><topic>Distributed computing</topic><topic>Image sensors</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Probability</topic><topic>Remote sensing</topic><topic>Sensor phenomena and characterization</topic><topic>Speckle</topic><toplevel>online_resources</toplevel><creatorcontrib>Chitroub, S.</creatorcontrib><creatorcontrib>Hamiti, R.</creatorcontrib><creatorcontrib>Allal, S.</creatorcontrib><creatorcontrib>Houacine, A.</creatorcontrib><creatorcontrib>Sansal, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chitroub, S.</au><au>Hamiti, R.</au><au>Allal, S.</au><au>Houacine, A.</au><au>Sansal, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence</atitle><btitle>IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)</btitle><stitle>IGARSS</stitle><date>1999</date><risdate>1999</risdate><volume>4</volume><spage>2001</spage><epage>2003 vol.4</epage><pages>2001-2003 vol.4</pages><isbn>0780352076</isbn><isbn>9780780352070</isbn><abstract>Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demonstrates the feasibility of using the theory of evidence to merge and classify this type of image. The data are modeled using the generalized K distribution. The suggested methodology is evaluating using SAR images provided by SIR-C.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.1999.775013</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780352076 |
ispartof | IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), 1999, Vol.4, p.2001-2003 vol.4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_775013 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Backscatter Distributed computing Image sensors Laboratories Layout Probability Remote sensing Sensor phenomena and characterization Speckle |
title | Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Supervised%20fusion-classification%20of%20multifrequency%20polarimetric%20SAR%20images%20using%20K%20distribution%20and%20theory%20of%20evidence&rft.btitle=IEEE%201999%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium.%20IGARSS'99%20(Cat.%20No.99CH36293)&rft.au=Chitroub,%20S.&rft.date=1999&rft.volume=4&rft.spage=2001&rft.epage=2003%20vol.4&rft.pages=2001-2003%20vol.4&rft.isbn=0780352076&rft.isbn_list=9780780352070&rft_id=info:doi/10.1109/IGARSS.1999.775013&rft_dat=%3Cieee_6IE%3E775013%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=775013&rfr_iscdi=true |