Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence

Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chitroub, S., Hamiti, R., Allal, S., Houacine, A., Sansal, B.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2003 vol.4
container_issue
container_start_page 2001
container_title
container_volume 4
creator Chitroub, S.
Hamiti, R.
Allal, S.
Houacine, A.
Sansal, B.
description Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demonstrates the feasibility of using the theory of evidence to merge and classify this type of image. The data are modeled using the generalized K distribution. The suggested methodology is evaluating using SAR images provided by SIR-C.
doi_str_mv 10.1109/IGARSS.1999.775013
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_775013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>775013</ieee_id><sourcerecordid>775013</sourcerecordid><originalsourceid>FETCH-ieee_primary_7750133</originalsourceid><addsrcrecordid>eNp9j81uwjAQhC0hJCjwApz2BUjtJsHkiFD_1BvpHZlkTbfKH944Ut6-LvTcuYxGo_mkEWKtZKSUzB7fX_fHPI9UlmWR1qlU8UQ8SL2Tcfok9XYmVszfMihJE71L5mLIfYduIMYSrGdqm01RGWayVJg-RGgt1L7qyTq8emyKEbq2Mo5q7B0VkO-PQLW5IEOYNxf4gJI4VGd_m5umhP4LWzf-knCgMjBwKabWVIyrP1-I9cvz5-FtQ4h46gLduPF0fxD_W_4A5AhOEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chitroub, S. ; Hamiti, R. ; Allal, S. ; Houacine, A. ; Sansal, B.</creator><creatorcontrib>Chitroub, S. ; Hamiti, R. ; Allal, S. ; Houacine, A. ; Sansal, B.</creatorcontrib><description>Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demonstrates the feasibility of using the theory of evidence to merge and classify this type of image. The data are modeled using the generalized K distribution. The suggested methodology is evaluating using SAR images provided by SIR-C.</description><identifier>ISBN: 0780352076</identifier><identifier>ISBN: 9780780352070</identifier><identifier>DOI: 10.1109/IGARSS.1999.775013</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Backscatter ; Distributed computing ; Image sensors ; Laboratories ; Layout ; Probability ; Remote sensing ; Sensor phenomena and characterization ; Speckle</subject><ispartof>IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), 1999, Vol.4, p.2001-2003 vol.4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/775013$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/775013$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chitroub, S.</creatorcontrib><creatorcontrib>Hamiti, R.</creatorcontrib><creatorcontrib>Allal, S.</creatorcontrib><creatorcontrib>Houacine, A.</creatorcontrib><creatorcontrib>Sansal, B.</creatorcontrib><title>Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence</title><title>IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)</title><addtitle>IGARSS</addtitle><description>Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demonstrates the feasibility of using the theory of evidence to merge and classify this type of image. The data are modeled using the generalized K distribution. The suggested methodology is evaluating using SAR images provided by SIR-C.</description><subject>Application software</subject><subject>Backscatter</subject><subject>Distributed computing</subject><subject>Image sensors</subject><subject>Laboratories</subject><subject>Layout</subject><subject>Probability</subject><subject>Remote sensing</subject><subject>Sensor phenomena and characterization</subject><subject>Speckle</subject><isbn>0780352076</isbn><isbn>9780780352070</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1999</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j81uwjAQhC0hJCjwApz2BUjtJsHkiFD_1BvpHZlkTbfKH944Ut6-LvTcuYxGo_mkEWKtZKSUzB7fX_fHPI9UlmWR1qlU8UQ8SL2Tcfok9XYmVszfMihJE71L5mLIfYduIMYSrGdqm01RGWayVJg-RGgt1L7qyTq8emyKEbq2Mo5q7B0VkO-PQLW5IEOYNxf4gJI4VGd_m5umhP4LWzf-knCgMjBwKabWVIyrP1-I9cvz5-FtQ4h46gLduPF0fxD_W_4A5AhOEw</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Chitroub, S.</creator><creator>Hamiti, R.</creator><creator>Allal, S.</creator><creator>Houacine, A.</creator><creator>Sansal, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>1999</creationdate><title>Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence</title><author>Chitroub, S. ; Hamiti, R. ; Allal, S. ; Houacine, A. ; Sansal, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_7750133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Application software</topic><topic>Backscatter</topic><topic>Distributed computing</topic><topic>Image sensors</topic><topic>Laboratories</topic><topic>Layout</topic><topic>Probability</topic><topic>Remote sensing</topic><topic>Sensor phenomena and characterization</topic><topic>Speckle</topic><toplevel>online_resources</toplevel><creatorcontrib>Chitroub, S.</creatorcontrib><creatorcontrib>Hamiti, R.</creatorcontrib><creatorcontrib>Allal, S.</creatorcontrib><creatorcontrib>Houacine, A.</creatorcontrib><creatorcontrib>Sansal, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chitroub, S.</au><au>Hamiti, R.</au><au>Allal, S.</au><au>Houacine, A.</au><au>Sansal, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence</atitle><btitle>IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293)</btitle><stitle>IGARSS</stitle><date>1999</date><risdate>1999</risdate><volume>4</volume><spage>2001</spage><epage>2003 vol.4</epage><pages>2001-2003 vol.4</pages><isbn>0780352076</isbn><isbn>9780780352070</isbn><abstract>Importance of using multifrequency polarimetric SAR data for scene classification has been recognized in remote sensing applications. However, many problems have to be faced, due to the inadequacy of the conventional classification techniques because of the nature of the SAR images. This paper demonstrates the feasibility of using the theory of evidence to merge and classify this type of image. The data are modeled using the generalized K distribution. The suggested methodology is evaluating using SAR images provided by SIR-C.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS.1999.775013</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780352076
ispartof IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293), 1999, Vol.4, p.2001-2003 vol.4
issn
language eng
recordid cdi_ieee_primary_775013
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Backscatter
Distributed computing
Image sensors
Laboratories
Layout
Probability
Remote sensing
Sensor phenomena and characterization
Speckle
title Supervised fusion-classification of multifrequency polarimetric SAR images using K distribution and theory of evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Supervised%20fusion-classification%20of%20multifrequency%20polarimetric%20SAR%20images%20using%20K%20distribution%20and%20theory%20of%20evidence&rft.btitle=IEEE%201999%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium.%20IGARSS'99%20(Cat.%20No.99CH36293)&rft.au=Chitroub,%20S.&rft.date=1999&rft.volume=4&rft.spage=2001&rft.epage=2003%20vol.4&rft.pages=2001-2003%20vol.4&rft.isbn=0780352076&rft.isbn_list=9780780352070&rft_id=info:doi/10.1109/IGARSS.1999.775013&rft_dat=%3Cieee_6IE%3E775013%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=775013&rfr_iscdi=true