Integrated Monolayer Planar Flux Transformer and Resonator Tank Circuit for High- T RF-SQUID Magnetometer
The authors propose a new design for monolayer superconducting planar flux transformer integrated with a coplanar resonator serving as a gigahertz range tank circuit for high-T c rf-SQUID magnetometers. Based on the proposed design, which is optimized using the finite element method, the transformer...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2017-06, Vol.27 (4), p.1-4 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 27 |
creator | Shanehsazzadeh, Faezeh Jabbari, Tahereh Qaderi, Fatemeh Fardmanesh, Mehdi |
description | The authors propose a new design for monolayer superconducting planar flux transformer integrated with a coplanar resonator serving as a gigahertz range tank circuit for high-T c rf-SQUID magnetometers. Based on the proposed design, which is optimized using the finite element method, the transformer-resonator configuration is made of 200-nm-thick monolayer YBCO film on a crystalline LaAlO3 substrate. In this optimized design, the SQUID magnetometer is coupled through flip-chip configuration with the configuration providing high coupling coefficient between the devices. The design permits coupling of the rf signals to the SQUID efficiently, whereas the transformer is designed to couple the dc to low-frequency magnetic field signals to the SQUID without disturbing the rf excitation. By means of split-ring resonator structure and also a SrTiO 3 layer on the back side of the configuration, tuning the resonance frequency with high precision could be made possible using minimum change in the design. Loaded quality factor and the coupling coefficient of the designed resonator are obtained to be high to meet the SQUID system requirements very well. Also, lower field-to-flux transformation coefficient is achieved by using our single-turn transformer design compared to that of the bare SQUID. |
doi_str_mv | 10.1109/TASC.2016.2630023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7747462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7747462</ieee_id><sourcerecordid>1850240579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-b846cb20adc232e276ccdb10898c0e8b48a0f9f487994ae4b4f86633585d059a3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUhhujiYj-AONNE6-Hp19bd0mmCAlEhXHddFuHQ2i13RL5945AvDpvTp73nORB6J7AiBBIn_LxKhtRIPGIxgyAsgs0IELIiAoiLvsMgkSSUnaNbkLYAhAuuRigZmZbs_G6NRVeOOt2-mA8ft9pqz2e7LpfnHttQ-38vt9rW-GlCc7q1nmca_uFs8aXXdPinsDTZvMZ4RwvJ9HqYz17xgu9saZ1e9Maf4uuar0L5u48h2g9ecmzaTR_e51l43lUUpBtVEgelwUFXZWUUUOTuCyrgoBMZQlGFlxqqNOayyRNuTa84LWMY8aEFBWIVLMhejzd_fbupzOhVVvXedu_VEQKoBxEkvYUOVGldyF4U6tv3-y1PygC6mhUHY2qo1F1Ntp3Hk6dxhjzzycJT3hM2R9ts3EX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850240579</pqid></control><display><type>article</type><title>Integrated Monolayer Planar Flux Transformer and Resonator Tank Circuit for High- T RF-SQUID Magnetometer</title><source>IEEE Electronic Library (IEL)</source><creator>Shanehsazzadeh, Faezeh ; Jabbari, Tahereh ; Qaderi, Fatemeh ; Fardmanesh, Mehdi</creator><creatorcontrib>Shanehsazzadeh, Faezeh ; Jabbari, Tahereh ; Qaderi, Fatemeh ; Fardmanesh, Mehdi</creatorcontrib><description>The authors propose a new design for monolayer superconducting planar flux transformer integrated with a coplanar resonator serving as a gigahertz range tank circuit for high-T c rf-SQUID magnetometers. Based on the proposed design, which is optimized using the finite element method, the transformer-resonator configuration is made of 200-nm-thick monolayer YBCO film on a crystalline LaAlO3 substrate. In this optimized design, the SQUID magnetometer is coupled through flip-chip configuration with the configuration providing high coupling coefficient between the devices. The design permits coupling of the rf signals to the SQUID efficiently, whereas the transformer is designed to couple the dc to low-frequency magnetic field signals to the SQUID without disturbing the rf excitation. By means of split-ring resonator structure and also a SrTiO 3 layer on the back side of the configuration, tuning the resonance frequency with high precision could be made possible using minimum change in the design. Loaded quality factor and the coupling coefficient of the designed resonator are obtained to be high to meet the SQUID system requirements very well. Also, lower field-to-flux transformation coefficient is achieved by using our single-turn transformer design compared to that of the bare SQUID.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2016.2630023</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Configurations ; Coupling coefficients ; Couplings ; Design ; Design factors ; Design optimization ; Finite element method ; Flux transformer ; High-temperature superconductors ; LC circuits ; Magnetic fields ; Magnetometers ; Monolayers ; Planar resonator ; Q-factor ; Resonant frequency ; Resonators ; Rf-SQUIDs ; SQUIDs ; Strontium titanates ; Substrates ; Superconducting quantum interference devices ; Transformers</subject><ispartof>IEEE transactions on applied superconductivity, 2017-06, Vol.27 (4), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-b846cb20adc232e276ccdb10898c0e8b48a0f9f487994ae4b4f86633585d059a3</citedby><cites>FETCH-LOGICAL-c208t-b846cb20adc232e276ccdb10898c0e8b48a0f9f487994ae4b4f86633585d059a3</cites><orcidid>0000-0002-4283-2249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7747462$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7747462$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shanehsazzadeh, Faezeh</creatorcontrib><creatorcontrib>Jabbari, Tahereh</creatorcontrib><creatorcontrib>Qaderi, Fatemeh</creatorcontrib><creatorcontrib>Fardmanesh, Mehdi</creatorcontrib><title>Integrated Monolayer Planar Flux Transformer and Resonator Tank Circuit for High- T RF-SQUID Magnetometer</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The authors propose a new design for monolayer superconducting planar flux transformer integrated with a coplanar resonator serving as a gigahertz range tank circuit for high-T c rf-SQUID magnetometers. Based on the proposed design, which is optimized using the finite element method, the transformer-resonator configuration is made of 200-nm-thick monolayer YBCO film on a crystalline LaAlO3 substrate. In this optimized design, the SQUID magnetometer is coupled through flip-chip configuration with the configuration providing high coupling coefficient between the devices. The design permits coupling of the rf signals to the SQUID efficiently, whereas the transformer is designed to couple the dc to low-frequency magnetic field signals to the SQUID without disturbing the rf excitation. By means of split-ring resonator structure and also a SrTiO 3 layer on the back side of the configuration, tuning the resonance frequency with high precision could be made possible using minimum change in the design. Loaded quality factor and the coupling coefficient of the designed resonator are obtained to be high to meet the SQUID system requirements very well. Also, lower field-to-flux transformation coefficient is achieved by using our single-turn transformer design compared to that of the bare SQUID.</description><subject>Circuit design</subject><subject>Configurations</subject><subject>Coupling coefficients</subject><subject>Couplings</subject><subject>Design</subject><subject>Design factors</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Flux transformer</subject><subject>High-temperature superconductors</subject><subject>LC circuits</subject><subject>Magnetic fields</subject><subject>Magnetometers</subject><subject>Monolayers</subject><subject>Planar resonator</subject><subject>Q-factor</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Rf-SQUIDs</subject><subject>SQUIDs</subject><subject>Strontium titanates</subject><subject>Substrates</subject><subject>Superconducting quantum interference devices</subject><subject>Transformers</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUhhujiYj-AONNE6-Hp19bd0mmCAlEhXHddFuHQ2i13RL5945AvDpvTp73nORB6J7AiBBIn_LxKhtRIPGIxgyAsgs0IELIiAoiLvsMgkSSUnaNbkLYAhAuuRigZmZbs_G6NRVeOOt2-mA8ft9pqz2e7LpfnHttQ-38vt9rW-GlCc7q1nmca_uFs8aXXdPinsDTZvMZ4RwvJ9HqYz17xgu9saZ1e9Maf4uuar0L5u48h2g9ecmzaTR_e51l43lUUpBtVEgelwUFXZWUUUOTuCyrgoBMZQlGFlxqqNOayyRNuTa84LWMY8aEFBWIVLMhejzd_fbupzOhVVvXedu_VEQKoBxEkvYUOVGldyF4U6tv3-y1PygC6mhUHY2qo1F1Ntp3Hk6dxhjzzycJT3hM2R9ts3EX</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Shanehsazzadeh, Faezeh</creator><creator>Jabbari, Tahereh</creator><creator>Qaderi, Fatemeh</creator><creator>Fardmanesh, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4283-2249</orcidid></search><sort><creationdate>20170601</creationdate><title>Integrated Monolayer Planar Flux Transformer and Resonator Tank Circuit for High- T RF-SQUID Magnetometer</title><author>Shanehsazzadeh, Faezeh ; Jabbari, Tahereh ; Qaderi, Fatemeh ; Fardmanesh, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-b846cb20adc232e276ccdb10898c0e8b48a0f9f487994ae4b4f86633585d059a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Circuit design</topic><topic>Configurations</topic><topic>Coupling coefficients</topic><topic>Couplings</topic><topic>Design</topic><topic>Design factors</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Flux transformer</topic><topic>High-temperature superconductors</topic><topic>LC circuits</topic><topic>Magnetic fields</topic><topic>Magnetometers</topic><topic>Monolayers</topic><topic>Planar resonator</topic><topic>Q-factor</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Rf-SQUIDs</topic><topic>SQUIDs</topic><topic>Strontium titanates</topic><topic>Substrates</topic><topic>Superconducting quantum interference devices</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanehsazzadeh, Faezeh</creatorcontrib><creatorcontrib>Jabbari, Tahereh</creatorcontrib><creatorcontrib>Qaderi, Fatemeh</creatorcontrib><creatorcontrib>Fardmanesh, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shanehsazzadeh, Faezeh</au><au>Jabbari, Tahereh</au><au>Qaderi, Fatemeh</au><au>Fardmanesh, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Monolayer Planar Flux Transformer and Resonator Tank Circuit for High- T RF-SQUID Magnetometer</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>27</volume><issue>4</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The authors propose a new design for monolayer superconducting planar flux transformer integrated with a coplanar resonator serving as a gigahertz range tank circuit for high-T c rf-SQUID magnetometers. Based on the proposed design, which is optimized using the finite element method, the transformer-resonator configuration is made of 200-nm-thick monolayer YBCO film on a crystalline LaAlO3 substrate. In this optimized design, the SQUID magnetometer is coupled through flip-chip configuration with the configuration providing high coupling coefficient between the devices. The design permits coupling of the rf signals to the SQUID efficiently, whereas the transformer is designed to couple the dc to low-frequency magnetic field signals to the SQUID without disturbing the rf excitation. By means of split-ring resonator structure and also a SrTiO 3 layer on the back side of the configuration, tuning the resonance frequency with high precision could be made possible using minimum change in the design. Loaded quality factor and the coupling coefficient of the designed resonator are obtained to be high to meet the SQUID system requirements very well. Also, lower field-to-flux transformation coefficient is achieved by using our single-turn transformer design compared to that of the bare SQUID.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2016.2630023</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4283-2249</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2017-06, Vol.27 (4), p.1-4 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_ieee_primary_7747462 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit design Configurations Coupling coefficients Couplings Design Design factors Design optimization Finite element method Flux transformer High-temperature superconductors LC circuits Magnetic fields Magnetometers Monolayers Planar resonator Q-factor Resonant frequency Resonators Rf-SQUIDs SQUIDs Strontium titanates Substrates Superconducting quantum interference devices Transformers |
title | Integrated Monolayer Planar Flux Transformer and Resonator Tank Circuit for High- T RF-SQUID Magnetometer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Monolayer%20Planar%20Flux%20Transformer%20and%20Resonator%20Tank%20Circuit%20for%20High-%20T%20RF-SQUID%20Magnetometer&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Shanehsazzadeh,%20Faezeh&rft.date=2017-06-01&rft.volume=27&rft.issue=4&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2016.2630023&rft_dat=%3Cproquest_RIE%3E1850240579%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850240579&rft_id=info:pmid/&rft_ieee_id=7747462&rfr_iscdi=true |