Model Predictive Control-Based Optimal Operations of District Heating System With Thermal Energy Storage and Flexible Loads

Operating heating power plant (DHPP) with fluctuating load is a complex problem. Thermal energy storage (TES), flexible loads, and operating constraints compound this complexity further. This investigation focuses on the design of a model predictive controller (MPC) that reduces the operating and ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2017-04, Vol.14 (2), p.547-557
Hauptverfasser: Verrilli, Francesca, Srinivasan, Seshadhri, Gambino, Giovanni, Canelli, Michele, Himanka, Mikko, Del Vecchio, Carmen, Sasso, Maurizio, Glielmo, Luigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 557
container_issue 2
container_start_page 547
container_title IEEE transactions on automation science and engineering
container_volume 14
creator Verrilli, Francesca
Srinivasan, Seshadhri
Gambino, Giovanni
Canelli, Michele
Himanka, Mikko
Del Vecchio, Carmen
Sasso, Maurizio
Glielmo, Luigi
description Operating heating power plant (DHPP) with fluctuating load is a complex problem. Thermal energy storage (TES), flexible loads, and operating constraints compound this complexity further. This investigation focuses on the design of a model predictive controller (MPC) that reduces the operating and maintenance cost in a DHPP, considering TES and flexible loads. The MPC accomplishes this task by scheduling boilers, TES units, and flexible loads. To handle the fluctuating demand, the MPC uses forecasts and combines it with a constrained optimization problem. The objective function reflects the cost, whereas the generator limits, TES dynamics, thermal loads, including supply temperature, power plant layout, and reliability, are the constraints. The resulting optimization problem is modeled as a mixed-integer linear program with both continuous and logic variables. Here the logic variables model the operating modes of the boiler and storage units. The use of receding horizon approach enhances the robustness to the forecast errors. The constraints modeling plant layout, supply temperature, and grid reliability lead to a more realistic solution. The MPC is illustrated using simulation on historical data and experiments on a DHPP at Ylivieska, Finland. Our results demonstrate the cost benefits of the proposed approach.
doi_str_mv 10.1109/TASE.2016.2618948
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7742394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7742394</ieee_id><sourcerecordid>10_1109_TASE_2016_2618948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-f843e0d824bd44327c2dc26f813fc3c43d20553a86927d1b337be38aae5197c13</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHzJF-jM3zZ9nLNzwmTCJj6WtLndIl0zkiAOv7wtGz6dy73nXDg_hO4pmVBK8sfNdF1MGKHphKVU5UJdoBGVUiU8U_xymIVMZC7lNboJ4YsQJlRORuj3zRlo8bsHY-tovwHPXBe9a5MnHcDg1SHavW57Ba-jdV3ArsHPNkTf-_EC-mW3xetjiLDHnzbu8GYHfogUHfjtEa-j83oLWHcGz1v4sVULeOm0CbfoqtFtgLuzjtHHvNjMFsly9fI6my6TmqUyJo0SHIhRTFRGCM6ympn-0ijKm5rXghtGpORapTnLDK04zyrgSmuQNM9qyseInv7W3oXgoSkPvi_ljyUl5UCvHOiVA73yTK_PPJwyFgD-_VkmGM8F_wOujWzj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Model Predictive Control-Based Optimal Operations of District Heating System With Thermal Energy Storage and Flexible Loads</title><source>IEEE Electronic Library (IEL)</source><creator>Verrilli, Francesca ; Srinivasan, Seshadhri ; Gambino, Giovanni ; Canelli, Michele ; Himanka, Mikko ; Del Vecchio, Carmen ; Sasso, Maurizio ; Glielmo, Luigi</creator><creatorcontrib>Verrilli, Francesca ; Srinivasan, Seshadhri ; Gambino, Giovanni ; Canelli, Michele ; Himanka, Mikko ; Del Vecchio, Carmen ; Sasso, Maurizio ; Glielmo, Luigi</creatorcontrib><description>Operating heating power plant (DHPP) with fluctuating load is a complex problem. Thermal energy storage (TES), flexible loads, and operating constraints compound this complexity further. This investigation focuses on the design of a model predictive controller (MPC) that reduces the operating and maintenance cost in a DHPP, considering TES and flexible loads. The MPC accomplishes this task by scheduling boilers, TES units, and flexible loads. To handle the fluctuating demand, the MPC uses forecasts and combines it with a constrained optimization problem. The objective function reflects the cost, whereas the generator limits, TES dynamics, thermal loads, including supply temperature, power plant layout, and reliability, are the constraints. The resulting optimization problem is modeled as a mixed-integer linear program with both continuous and logic variables. Here the logic variables model the operating modes of the boiler and storage units. The use of receding horizon approach enhances the robustness to the forecast errors. The constraints modeling plant layout, supply temperature, and grid reliability lead to a more realistic solution. The MPC is illustrated using simulation on historical data and experiments on a DHPP at Ylivieska, Finland. Our results demonstrate the cost benefits of the proposed approach.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2016.2618948</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boilers ; Cogeneration ; District heating power plant (DHPP) ; layout constraints ; Load modeling ; Mathematical model ; mixed-integer linear program (MILP) ; model predictive control (MPC) ; Optimization ; Thermal energy ; thermal energy storage (TES)</subject><ispartof>IEEE transactions on automation science and engineering, 2017-04, Vol.14 (2), p.547-557</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-f843e0d824bd44327c2dc26f813fc3c43d20553a86927d1b337be38aae5197c13</citedby><cites>FETCH-LOGICAL-c265t-f843e0d824bd44327c2dc26f813fc3c43d20553a86927d1b337be38aae5197c13</cites><orcidid>0000-0003-0014-3928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7742394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7742394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Verrilli, Francesca</creatorcontrib><creatorcontrib>Srinivasan, Seshadhri</creatorcontrib><creatorcontrib>Gambino, Giovanni</creatorcontrib><creatorcontrib>Canelli, Michele</creatorcontrib><creatorcontrib>Himanka, Mikko</creatorcontrib><creatorcontrib>Del Vecchio, Carmen</creatorcontrib><creatorcontrib>Sasso, Maurizio</creatorcontrib><creatorcontrib>Glielmo, Luigi</creatorcontrib><title>Model Predictive Control-Based Optimal Operations of District Heating System With Thermal Energy Storage and Flexible Loads</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>Operating heating power plant (DHPP) with fluctuating load is a complex problem. Thermal energy storage (TES), flexible loads, and operating constraints compound this complexity further. This investigation focuses on the design of a model predictive controller (MPC) that reduces the operating and maintenance cost in a DHPP, considering TES and flexible loads. The MPC accomplishes this task by scheduling boilers, TES units, and flexible loads. To handle the fluctuating demand, the MPC uses forecasts and combines it with a constrained optimization problem. The objective function reflects the cost, whereas the generator limits, TES dynamics, thermal loads, including supply temperature, power plant layout, and reliability, are the constraints. The resulting optimization problem is modeled as a mixed-integer linear program with both continuous and logic variables. Here the logic variables model the operating modes of the boiler and storage units. The use of receding horizon approach enhances the robustness to the forecast errors. The constraints modeling plant layout, supply temperature, and grid reliability lead to a more realistic solution. The MPC is illustrated using simulation on historical data and experiments on a DHPP at Ylivieska, Finland. Our results demonstrate the cost benefits of the proposed approach.</description><subject>Boilers</subject><subject>Cogeneration</subject><subject>District heating power plant (DHPP)</subject><subject>layout constraints</subject><subject>Load modeling</subject><subject>Mathematical model</subject><subject>mixed-integer linear program (MILP)</subject><subject>model predictive control (MPC)</subject><subject>Optimization</subject><subject>Thermal energy</subject><subject>thermal energy storage (TES)</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHzJF-jM3zZ9nLNzwmTCJj6WtLndIl0zkiAOv7wtGz6dy73nXDg_hO4pmVBK8sfNdF1MGKHphKVU5UJdoBGVUiU8U_xymIVMZC7lNboJ4YsQJlRORuj3zRlo8bsHY-tovwHPXBe9a5MnHcDg1SHavW57Ba-jdV3ArsHPNkTf-_EC-mW3xetjiLDHnzbu8GYHfogUHfjtEa-j83oLWHcGz1v4sVULeOm0CbfoqtFtgLuzjtHHvNjMFsly9fI6my6TmqUyJo0SHIhRTFRGCM6ympn-0ijKm5rXghtGpORapTnLDK04zyrgSmuQNM9qyseInv7W3oXgoSkPvi_ljyUl5UCvHOiVA73yTK_PPJwyFgD-_VkmGM8F_wOujWzj</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Verrilli, Francesca</creator><creator>Srinivasan, Seshadhri</creator><creator>Gambino, Giovanni</creator><creator>Canelli, Michele</creator><creator>Himanka, Mikko</creator><creator>Del Vecchio, Carmen</creator><creator>Sasso, Maurizio</creator><creator>Glielmo, Luigi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0014-3928</orcidid></search><sort><creationdate>201704</creationdate><title>Model Predictive Control-Based Optimal Operations of District Heating System With Thermal Energy Storage and Flexible Loads</title><author>Verrilli, Francesca ; Srinivasan, Seshadhri ; Gambino, Giovanni ; Canelli, Michele ; Himanka, Mikko ; Del Vecchio, Carmen ; Sasso, Maurizio ; Glielmo, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-f843e0d824bd44327c2dc26f813fc3c43d20553a86927d1b337be38aae5197c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boilers</topic><topic>Cogeneration</topic><topic>District heating power plant (DHPP)</topic><topic>layout constraints</topic><topic>Load modeling</topic><topic>Mathematical model</topic><topic>mixed-integer linear program (MILP)</topic><topic>model predictive control (MPC)</topic><topic>Optimization</topic><topic>Thermal energy</topic><topic>thermal energy storage (TES)</topic><toplevel>online_resources</toplevel><creatorcontrib>Verrilli, Francesca</creatorcontrib><creatorcontrib>Srinivasan, Seshadhri</creatorcontrib><creatorcontrib>Gambino, Giovanni</creatorcontrib><creatorcontrib>Canelli, Michele</creatorcontrib><creatorcontrib>Himanka, Mikko</creatorcontrib><creatorcontrib>Del Vecchio, Carmen</creatorcontrib><creatorcontrib>Sasso, Maurizio</creatorcontrib><creatorcontrib>Glielmo, Luigi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Verrilli, Francesca</au><au>Srinivasan, Seshadhri</au><au>Gambino, Giovanni</au><au>Canelli, Michele</au><au>Himanka, Mikko</au><au>Del Vecchio, Carmen</au><au>Sasso, Maurizio</au><au>Glielmo, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Predictive Control-Based Optimal Operations of District Heating System With Thermal Energy Storage and Flexible Loads</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2017-04</date><risdate>2017</risdate><volume>14</volume><issue>2</issue><spage>547</spage><epage>557</epage><pages>547-557</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>Operating heating power plant (DHPP) with fluctuating load is a complex problem. Thermal energy storage (TES), flexible loads, and operating constraints compound this complexity further. This investigation focuses on the design of a model predictive controller (MPC) that reduces the operating and maintenance cost in a DHPP, considering TES and flexible loads. The MPC accomplishes this task by scheduling boilers, TES units, and flexible loads. To handle the fluctuating demand, the MPC uses forecasts and combines it with a constrained optimization problem. The objective function reflects the cost, whereas the generator limits, TES dynamics, thermal loads, including supply temperature, power plant layout, and reliability, are the constraints. The resulting optimization problem is modeled as a mixed-integer linear program with both continuous and logic variables. Here the logic variables model the operating modes of the boiler and storage units. The use of receding horizon approach enhances the robustness to the forecast errors. The constraints modeling plant layout, supply temperature, and grid reliability lead to a more realistic solution. The MPC is illustrated using simulation on historical data and experiments on a DHPP at Ylivieska, Finland. Our results demonstrate the cost benefits of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/TASE.2016.2618948</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0014-3928</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2017-04, Vol.14 (2), p.547-557
issn 1545-5955
1558-3783
language eng
recordid cdi_ieee_primary_7742394
source IEEE Electronic Library (IEL)
subjects Boilers
Cogeneration
District heating power plant (DHPP)
layout constraints
Load modeling
Mathematical model
mixed-integer linear program (MILP)
model predictive control (MPC)
Optimization
Thermal energy
thermal energy storage (TES)
title Model Predictive Control-Based Optimal Operations of District Heating System With Thermal Energy Storage and Flexible Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Predictive%20Control-Based%20Optimal%20Operations%20of%20District%20Heating%20System%20With%20Thermal%20Energy%20Storage%20and%20Flexible%20Loads&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Verrilli,%20Francesca&rft.date=2017-04&rft.volume=14&rft.issue=2&rft.spage=547&rft.epage=557&rft.pages=547-557&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2016.2618948&rft_dat=%3Ccrossref_RIE%3E10_1109_TASE_2016_2618948%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7742394&rfr_iscdi=true