Unification of neural and wavelet networks and fuzzy systems

Analyzes several commonly used soft computing paradigms (neural and wavelet networks and fuzzy systems, Bayesian classifiers, fuzzy partitions, etc.) and tries to outline similarities and differences among each other. These are exploited to produce the weighted radial basis functions paradigm which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1999, Vol.10 (4), p.801-814
1. Verfasser: Reyneri, L.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814
container_issue 4
container_start_page 801
container_title IEEE transactions on neural networks
container_volume 10
creator Reyneri, L.M.
description Analyzes several commonly used soft computing paradigms (neural and wavelet networks and fuzzy systems, Bayesian classifiers, fuzzy partitions, etc.) and tries to outline similarities and differences among each other. These are exploited to produce the weighted radial basis functions paradigm which may act as a neuro-fuzzy unification paradigm. Training rules (both supervised and unsupervised) are also unified by the proposed algorithm. Analyzing differences and similarities among existing paradigms helps to understand that many soft computing paradigms are very similar to each other and can be grouped in just two major classes. The many reasons to unify soft computing paradigms are also shown in the paper. A conversion method is presented to convert perceptrons, radial basis functions, wavelet networks, and fuzzy systems from each other.
doi_str_mv 10.1109/72.774224
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_774224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>774224</ieee_id><sourcerecordid>733252133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-95edb715c4349dfcf9a23175ec0d8958545dbfdec1e57ea6894d685bc036c4c13</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTg1cP0oMoHjrz5qNpwIsMv2DgxZ1Llr6BatfOpnVsf73dWtSTnhLe_HjCy0PIKdAxANU3io2VEoyJPTIELSCkVPP99k6FDDVjakCOvH-jFISk0SEZQMwkk0oPye2syFxmTZ2VRVC6oMCmMnlgijRYmU_MsW5H9aqs3v1u6JrNZh34ta9x4Y_JgTO5x5P-HJHZw_3r5Cmcvjw-T-6moRVM1KGWmM4VSCu40KmzThvGQUm0NI21jKWQ6dylaAGlQhPFWqRRLOeW8sgKC3xErrrcZVV-NOjrZJF5i3luCiwbn2jQGhiT8b9Scd5uDpy38vJPyWLBQMXsf6gok9Eu8bqDtiq9r9AlyypbmGqdAE22PSWKJV1PrT3vQ5v5AtMf2RfTgoseGG9N7ipT2Mz_cioCsc0561iGiN-v_Sdf4gCgqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27025633</pqid></control><display><type>article</type><title>Unification of neural and wavelet networks and fuzzy systems</title><source>IEEE Electronic Library (IEL)</source><creator>Reyneri, L.M.</creator><creatorcontrib>Reyneri, L.M.</creatorcontrib><description>Analyzes several commonly used soft computing paradigms (neural and wavelet networks and fuzzy systems, Bayesian classifiers, fuzzy partitions, etc.) and tries to outline similarities and differences among each other. These are exploited to produce the weighted radial basis functions paradigm which may act as a neuro-fuzzy unification paradigm. Training rules (both supervised and unsupervised) are also unified by the proposed algorithm. Analyzing differences and similarities among existing paradigms helps to understand that many soft computing paradigms are very similar to each other and can be grouped in just two major classes. The many reasons to unify soft computing paradigms are also shown in the paper. A conversion method is presented to convert perceptrons, radial basis functions, wavelet networks, and fuzzy systems from each other.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.774224</identifier><identifier>PMID: 18252579</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Analogies ; Applied sciences ; Artificial intelligence ; Artificial neural networks ; Bayesian methods ; Computer networks ; Computer science; control theory; systems ; Computers in experimental physics ; Connectionism. Neural networks ; Exact sciences and technology ; Function approximation ; Fuzzy neural networks ; Fuzzy systems ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Learning ; Learning and adaptive systems ; Networks ; Neural networks ; Neural networks, fuzzy logic, artificial intelligence ; Partitioning algorithms ; Physics ; Radial basis function ; Soft computing ; Taxonomy ; Wavelet ; Wavelet analysis</subject><ispartof>IEEE transactions on neural networks, 1999, Vol.10 (4), p.801-814</ispartof><rights>1999 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-95edb715c4349dfcf9a23175ec0d8958545dbfdec1e57ea6894d685bc036c4c13</citedby><cites>FETCH-LOGICAL-c424t-95edb715c4349dfcf9a23175ec0d8958545dbfdec1e57ea6894d685bc036c4c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/774224$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/774224$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1876144$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18252579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reyneri, L.M.</creatorcontrib><title>Unification of neural and wavelet networks and fuzzy systems</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Analyzes several commonly used soft computing paradigms (neural and wavelet networks and fuzzy systems, Bayesian classifiers, fuzzy partitions, etc.) and tries to outline similarities and differences among each other. These are exploited to produce the weighted radial basis functions paradigm which may act as a neuro-fuzzy unification paradigm. Training rules (both supervised and unsupervised) are also unified by the proposed algorithm. Analyzing differences and similarities among existing paradigms helps to understand that many soft computing paradigms are very similar to each other and can be grouped in just two major classes. The many reasons to unify soft computing paradigms are also shown in the paper. A conversion method is presented to convert perceptrons, radial basis functions, wavelet networks, and fuzzy systems from each other.</description><subject>Algorithms</subject><subject>Analogies</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bayesian methods</subject><subject>Computer networks</subject><subject>Computer science; control theory; systems</subject><subject>Computers in experimental physics</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Function approximation</subject><subject>Fuzzy neural networks</subject><subject>Fuzzy systems</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neural networks, fuzzy logic, artificial intelligence</subject><subject>Partitioning algorithms</subject><subject>Physics</subject><subject>Radial basis function</subject><subject>Soft computing</subject><subject>Taxonomy</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1LwzAYBvAgipvTg1cP0oMoHjrz5qNpwIsMv2DgxZ1Llr6BatfOpnVsf73dWtSTnhLe_HjCy0PIKdAxANU3io2VEoyJPTIELSCkVPP99k6FDDVjakCOvH-jFISk0SEZQMwkk0oPye2syFxmTZ2VRVC6oMCmMnlgijRYmU_MsW5H9aqs3v1u6JrNZh34ta9x4Y_JgTO5x5P-HJHZw_3r5Cmcvjw-T-6moRVM1KGWmM4VSCu40KmzThvGQUm0NI21jKWQ6dylaAGlQhPFWqRRLOeW8sgKC3xErrrcZVV-NOjrZJF5i3luCiwbn2jQGhiT8b9Scd5uDpy38vJPyWLBQMXsf6gok9Eu8bqDtiq9r9AlyypbmGqdAE22PSWKJV1PrT3vQ5v5AtMf2RfTgoseGG9N7ipT2Mz_cioCsc0561iGiN-v_Sdf4gCgqg</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Reyneri, L.M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>1999</creationdate><title>Unification of neural and wavelet networks and fuzzy systems</title><author>Reyneri, L.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-95edb715c4349dfcf9a23175ec0d8958545dbfdec1e57ea6894d685bc036c4c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Analogies</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bayesian methods</topic><topic>Computer networks</topic><topic>Computer science; control theory; systems</topic><topic>Computers in experimental physics</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Function approximation</topic><topic>Fuzzy neural networks</topic><topic>Fuzzy systems</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neural networks, fuzzy logic, artificial intelligence</topic><topic>Partitioning algorithms</topic><topic>Physics</topic><topic>Radial basis function</topic><topic>Soft computing</topic><topic>Taxonomy</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Reyneri, L.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reyneri, L.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unification of neural and wavelet networks and fuzzy systems</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1999</date><risdate>1999</risdate><volume>10</volume><issue>4</issue><spage>801</spage><epage>814</epage><pages>801-814</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>Analyzes several commonly used soft computing paradigms (neural and wavelet networks and fuzzy systems, Bayesian classifiers, fuzzy partitions, etc.) and tries to outline similarities and differences among each other. These are exploited to produce the weighted radial basis functions paradigm which may act as a neuro-fuzzy unification paradigm. Training rules (both supervised and unsupervised) are also unified by the proposed algorithm. Analyzing differences and similarities among existing paradigms helps to understand that many soft computing paradigms are very similar to each other and can be grouped in just two major classes. The many reasons to unify soft computing paradigms are also shown in the paper. A conversion method is presented to convert perceptrons, radial basis functions, wavelet networks, and fuzzy systems from each other.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18252579</pmid><doi>10.1109/72.774224</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1999, Vol.10 (4), p.801-814
issn 1045-9227
1941-0093
language eng
recordid cdi_ieee_primary_774224
source IEEE Electronic Library (IEL)
subjects Algorithms
Analogies
Applied sciences
Artificial intelligence
Artificial neural networks
Bayesian methods
Computer networks
Computer science
control theory
systems
Computers in experimental physics
Connectionism. Neural networks
Exact sciences and technology
Function approximation
Fuzzy neural networks
Fuzzy systems
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Learning
Learning and adaptive systems
Networks
Neural networks
Neural networks, fuzzy logic, artificial intelligence
Partitioning algorithms
Physics
Radial basis function
Soft computing
Taxonomy
Wavelet
Wavelet analysis
title Unification of neural and wavelet networks and fuzzy systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A24%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unification%20of%20neural%20and%20wavelet%20networks%20and%20fuzzy%20systems&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Reyneri,%20L.M.&rft.date=1999&rft.volume=10&rft.issue=4&rft.spage=801&rft.epage=814&rft.pages=801-814&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.774224&rft_dat=%3Cproquest_RIE%3E733252133%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27025633&rft_id=info:pmid/18252579&rft_ieee_id=774224&rfr_iscdi=true