Machine Learning-Guided Etch Proximity Correction

Rule- and model-based methods of etch proximity correction (EPC) are widely used, but they are insufficiently accurate for technologies below 20 nm. Simple rules are no longer adequate for the complicated patterns in layouts; and models based on a few empirically determined parameters cannot reflect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2017-02, Vol.30 (1), p.1-7
Hauptverfasser: Shim, Seongbo, Shin, Youngsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 1
container_start_page 1
container_title IEEE transactions on semiconductor manufacturing
container_volume 30
creator Shim, Seongbo
Shin, Youngsoo
description Rule- and model-based methods of etch proximity correction (EPC) are widely used, but they are insufficiently accurate for technologies below 20 nm. Simple rules are no longer adequate for the complicated patterns in layouts; and models based on a few empirically determined parameters cannot reflect etching phenomena physically. We introduce machine learning to EPC: each segment of interest, together with its surroundings, is characterized by geometric and optical parameters, which are then submitted to an artificial neural network that predicts the etch bias. We have implemented this new approach to EPC using a commercial OPC tool, and applied it to a DRAM gate layer in 20-nm technology, achieving predictions that are 34% more accurate than model-based EPC.
doi_str_mv 10.1109/TSM.2016.2626304
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_7738596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7738596</ieee_id><sourcerecordid>10_1109_TSM_2016_2626304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-ce334be72d7d35691bf2ba3007b2a12a203d74c6b6f108abec4d621a0af9423f3</originalsourceid><addsrcrecordid>eNo9j0tLw0AYRQdRMFb3gpv8gYnfvJOlhFqFFAXrepinHbGJTCLYf29Ki6u7uedeDkK3BCpCoLnfvK0rCkRWVFLJgJ-hgghRY8q4OEcF1A3HUoC6RFfj-AlAOG9UgcjauG3qQ9kFk_vUf-DVT_LBl8vJbcvXPPymXZr2ZTvkHNyUhv4aXUTzNYabUy7Q--Ny0z7h7mX13D502M3_E3aBMW6Dol55JmRDbKTWMABlqSHUUGBecSetjARqY4PjXlJiwMSGUxbZAsFx1-VhHHOI-junncl7TUAflPWsrA_K-qQ8I3dHJIUQ_utKsVo0kv0BtY9R2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning-Guided Etch Proximity Correction</title><source>IEEE Electronic Library (IEL)</source><creator>Shim, Seongbo ; Shin, Youngsoo</creator><creatorcontrib>Shim, Seongbo ; Shin, Youngsoo</creatorcontrib><description>Rule- and model-based methods of etch proximity correction (EPC) are widely used, but they are insufficiently accurate for technologies below 20 nm. Simple rules are no longer adequate for the complicated patterns in layouts; and models based on a few empirically determined parameters cannot reflect etching phenomena physically. We introduce machine learning to EPC: each segment of interest, together with its surroundings, is characterized by geometric and optical parameters, which are then submitted to an artificial neural network that predicts the etch bias. We have implemented this new approach to EPC using a commercial OPC tool, and applied it to a DRAM gate layer in 20-nm technology, achieving predictions that are 34% more accurate than model-based EPC.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2016.2626304</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>IEEE</publisher><subject>artificial neural network ; Etch proximity correction (EPC) ; Etching ; Kernel ; Layout ; machine learning ; Optical imaging ; Resists ; Semiconductor device measurement ; Semiconductor device modeling</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2017-02, Vol.30 (1), p.1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-ce334be72d7d35691bf2ba3007b2a12a203d74c6b6f108abec4d621a0af9423f3</citedby><cites>FETCH-LOGICAL-c263t-ce334be72d7d35691bf2ba3007b2a12a203d74c6b6f108abec4d621a0af9423f3</cites><orcidid>0000-0001-5864-3111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7738596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7738596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shim, Seongbo</creatorcontrib><creatorcontrib>Shin, Youngsoo</creatorcontrib><title>Machine Learning-Guided Etch Proximity Correction</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>Rule- and model-based methods of etch proximity correction (EPC) are widely used, but they are insufficiently accurate for technologies below 20 nm. Simple rules are no longer adequate for the complicated patterns in layouts; and models based on a few empirically determined parameters cannot reflect etching phenomena physically. We introduce machine learning to EPC: each segment of interest, together with its surroundings, is characterized by geometric and optical parameters, which are then submitted to an artificial neural network that predicts the etch bias. We have implemented this new approach to EPC using a commercial OPC tool, and applied it to a DRAM gate layer in 20-nm technology, achieving predictions that are 34% more accurate than model-based EPC.</description><subject>artificial neural network</subject><subject>Etch proximity correction (EPC)</subject><subject>Etching</subject><subject>Kernel</subject><subject>Layout</subject><subject>machine learning</subject><subject>Optical imaging</subject><subject>Resists</subject><subject>Semiconductor device measurement</subject><subject>Semiconductor device modeling</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j0tLw0AYRQdRMFb3gpv8gYnfvJOlhFqFFAXrepinHbGJTCLYf29Ki6u7uedeDkK3BCpCoLnfvK0rCkRWVFLJgJ-hgghRY8q4OEcF1A3HUoC6RFfj-AlAOG9UgcjauG3qQ9kFk_vUf-DVT_LBl8vJbcvXPPymXZr2ZTvkHNyUhv4aXUTzNYabUy7Q--Ny0z7h7mX13D502M3_E3aBMW6Dol55JmRDbKTWMABlqSHUUGBecSetjARqY4PjXlJiwMSGUxbZAsFx1-VhHHOI-junncl7TUAflPWsrA_K-qQ8I3dHJIUQ_utKsVo0kv0BtY9R2g</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Shim, Seongbo</creator><creator>Shin, Youngsoo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5864-3111</orcidid></search><sort><creationdate>201702</creationdate><title>Machine Learning-Guided Etch Proximity Correction</title><author>Shim, Seongbo ; Shin, Youngsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-ce334be72d7d35691bf2ba3007b2a12a203d74c6b6f108abec4d621a0af9423f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>artificial neural network</topic><topic>Etch proximity correction (EPC)</topic><topic>Etching</topic><topic>Kernel</topic><topic>Layout</topic><topic>machine learning</topic><topic>Optical imaging</topic><topic>Resists</topic><topic>Semiconductor device measurement</topic><topic>Semiconductor device modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shim, Seongbo</creatorcontrib><creatorcontrib>Shin, Youngsoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shim, Seongbo</au><au>Shin, Youngsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Guided Etch Proximity Correction</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2017-02</date><risdate>2017</risdate><volume>30</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>Rule- and model-based methods of etch proximity correction (EPC) are widely used, but they are insufficiently accurate for technologies below 20 nm. Simple rules are no longer adequate for the complicated patterns in layouts; and models based on a few empirically determined parameters cannot reflect etching phenomena physically. We introduce machine learning to EPC: each segment of interest, together with its surroundings, is characterized by geometric and optical parameters, which are then submitted to an artificial neural network that predicts the etch bias. We have implemented this new approach to EPC using a commercial OPC tool, and applied it to a DRAM gate layer in 20-nm technology, achieving predictions that are 34% more accurate than model-based EPC.</abstract><pub>IEEE</pub><doi>10.1109/TSM.2016.2626304</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5864-3111</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2017-02, Vol.30 (1), p.1-7
issn 0894-6507
1558-2345
language eng
recordid cdi_ieee_primary_7738596
source IEEE Electronic Library (IEL)
subjects artificial neural network
Etch proximity correction (EPC)
Etching
Kernel
Layout
machine learning
Optical imaging
Resists
Semiconductor device measurement
Semiconductor device modeling
title Machine Learning-Guided Etch Proximity Correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Guided%20Etch%20Proximity%20Correction&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Shim,%20Seongbo&rft.date=2017-02&rft.volume=30&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2016.2626304&rft_dat=%3Ccrossref_RIE%3E10_1109_TSM_2016_2626304%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7738596&rfr_iscdi=true