Time-Dependent Electrical Resistance of Transmutational Material With 57Co

Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn caus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2016-12, Vol.63 (6), p.2993-2996
1. Verfasser: Yoshimizu, Norimasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2996
container_issue 6
container_start_page 2993
container_title IEEE transactions on nuclear science
container_volume 63
creator Yoshimizu, Norimasa
description Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn causing a change in electrical resistance over time. Significant increases- nearly a factor of four- in sample resistance over time are observed. Scaling is presented to show that samples that are less than 10 % of typical background exposure could be fabricated on the scale of microelectronics, avoiding detection. Finally, an application is demonstrated of a Wheatstone bridge containing a transmutational sample, leading to timed disabling of a power regulator.
doi_str_mv 10.1109/TNS.2016.2624278
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7731173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7731173</ieee_id><sourcerecordid>1850230814</sourcerecordid><originalsourceid>FETCH-LOGICAL-i484-3650a21a4c745960f2e3c2abc3ae19c236e3263291e0726672f348f9ffb518893</originalsourceid><addsrcrecordid>eNotjk1LAzEYhIMoWKt3wcuC5615852j1PpFVdAFj0sa32DKdrcm2YP_3oV6mhnmYRhCLoEuAKi9aV4_FoyCWjDFBNPmiMxASlOD1OaYzCgFU1th7Sk5y3k7RSGpnJHnJu6wvsM99l_Yl2rVoS8petdV75hjLq73WA2hapLr824srsShn9oXVzDFyXzG8l1JvRzOyUlwXcaLf52T5n7VLB_r9dvD0_J2XUdhRM2VpI6BE14LaRUNDLlnbuO5Q7CecYWcKc4sINVMKc0CFybYEDYSjLF8Tq4Ps_s0_IyYS7sdxjRdyi0YSRmnBsREXR2oiIjtPsWdS7-t1hxAc_4HZfZV9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850230814</pqid></control><display><type>article</type><title>Time-Dependent Electrical Resistance of Transmutational Material With 57Co</title><source>IEEE Electronic Library (IEL)</source><creator>Yoshimizu, Norimasa</creator><creatorcontrib>Yoshimizu, Norimasa</creatorcontrib><description>Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn causing a change in electrical resistance over time. Significant increases- nearly a factor of four- in sample resistance over time are observed. Scaling is presented to show that samples that are less than 10 % of typical background exposure could be fabricated on the scale of microelectronics, avoiding detection. Finally, an application is demonstrated of a Wheatstone bridge containing a transmutational sample, leading to timed disabling of a power regulator.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2016.2624278</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; Cobalt ; Cobalt isotopes ; Electrical resistance ; Electrical resistance measurement ; Electrical resistivity ; Electronics industry ; Magnetism ; Metal oxide semiconductors ; Radioactive materials ; Radioisotopes ; Resistance ; Substrates ; Time dependence ; Time measurement ; transmutation ; Voltage regulators ; Wheatstone bridges</subject><ispartof>IEEE transactions on nuclear science, 2016-12, Vol.63 (6), p.2993-2996</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7731173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7731173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoshimizu, Norimasa</creatorcontrib><title>Time-Dependent Electrical Resistance of Transmutational Material With 57Co</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn causing a change in electrical resistance over time. Significant increases- nearly a factor of four- in sample resistance over time are observed. Scaling is presented to show that samples that are less than 10 % of typical background exposure could be fabricated on the scale of microelectronics, avoiding detection. Finally, an application is demonstrated of a Wheatstone bridge containing a transmutational sample, leading to timed disabling of a power regulator.</description><subject>CMOS</subject><subject>Cobalt</subject><subject>Cobalt isotopes</subject><subject>Electrical resistance</subject><subject>Electrical resistance measurement</subject><subject>Electrical resistivity</subject><subject>Electronics industry</subject><subject>Magnetism</subject><subject>Metal oxide semiconductors</subject><subject>Radioactive materials</subject><subject>Radioisotopes</subject><subject>Resistance</subject><subject>Substrates</subject><subject>Time dependence</subject><subject>Time measurement</subject><subject>transmutation</subject><subject>Voltage regulators</subject><subject>Wheatstone bridges</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjk1LAzEYhIMoWKt3wcuC5615852j1PpFVdAFj0sa32DKdrcm2YP_3oV6mhnmYRhCLoEuAKi9aV4_FoyCWjDFBNPmiMxASlOD1OaYzCgFU1th7Sk5y3k7RSGpnJHnJu6wvsM99l_Yl2rVoS8petdV75hjLq73WA2hapLr824srsShn9oXVzDFyXzG8l1JvRzOyUlwXcaLf52T5n7VLB_r9dvD0_J2XUdhRM2VpI6BE14LaRUNDLlnbuO5Q7CecYWcKc4sINVMKc0CFybYEDYSjLF8Tq4Ps_s0_IyYS7sdxjRdyi0YSRmnBsREXR2oiIjtPsWdS7-t1hxAc_4HZfZV9w</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Yoshimizu, Norimasa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201612</creationdate><title>Time-Dependent Electrical Resistance of Transmutational Material With 57Co</title><author>Yoshimizu, Norimasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i484-3650a21a4c745960f2e3c2abc3ae19c236e3263291e0726672f348f9ffb518893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CMOS</topic><topic>Cobalt</topic><topic>Cobalt isotopes</topic><topic>Electrical resistance</topic><topic>Electrical resistance measurement</topic><topic>Electrical resistivity</topic><topic>Electronics industry</topic><topic>Magnetism</topic><topic>Metal oxide semiconductors</topic><topic>Radioactive materials</topic><topic>Radioisotopes</topic><topic>Resistance</topic><topic>Substrates</topic><topic>Time dependence</topic><topic>Time measurement</topic><topic>transmutation</topic><topic>Voltage regulators</topic><topic>Wheatstone bridges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimizu, Norimasa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshimizu, Norimasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Dependent Electrical Resistance of Transmutational Material With 57Co</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2016-12</date><risdate>2016</risdate><volume>63</volume><issue>6</issue><spage>2993</spage><epage>2996</epage><pages>2993-2996</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn causing a change in electrical resistance over time. Significant increases- nearly a factor of four- in sample resistance over time are observed. Scaling is presented to show that samples that are less than 10 % of typical background exposure could be fabricated on the scale of microelectronics, avoiding detection. Finally, an application is demonstrated of a Wheatstone bridge containing a transmutational sample, leading to timed disabling of a power regulator.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2016.2624278</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2016-12, Vol.63 (6), p.2993-2996
issn 0018-9499
1558-1578
language eng
recordid cdi_ieee_primary_7731173
source IEEE Electronic Library (IEL)
subjects CMOS
Cobalt
Cobalt isotopes
Electrical resistance
Electrical resistance measurement
Electrical resistivity
Electronics industry
Magnetism
Metal oxide semiconductors
Radioactive materials
Radioisotopes
Resistance
Substrates
Time dependence
Time measurement
transmutation
Voltage regulators
Wheatstone bridges
title Time-Dependent Electrical Resistance of Transmutational Material With 57Co
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Dependent%20Electrical%20Resistance%20of%20Transmutational%20Material%20With%2057Co&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Yoshimizu,%20Norimasa&rft.date=2016-12&rft.volume=63&rft.issue=6&rft.spage=2993&rft.epage=2996&rft.pages=2993-2996&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2016.2624278&rft_dat=%3Cproquest_RIE%3E1850230814%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850230814&rft_id=info:pmid/&rft_ieee_id=7731173&rfr_iscdi=true