Time-Dependent Electrical Resistance of Transmutational Material With 57Co
Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn caus...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2016-12, Vol.63 (6), p.2993-2996 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2996 |
---|---|
container_issue | 6 |
container_start_page | 2993 |
container_title | IEEE transactions on nuclear science |
container_volume | 63 |
creator | Yoshimizu, Norimasa |
description | Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn causing a change in electrical resistance over time. Significant increases- nearly a factor of four- in sample resistance over time are observed. Scaling is presented to show that samples that are less than 10 % of typical background exposure could be fabricated on the scale of microelectronics, avoiding detection. Finally, an application is demonstrated of a Wheatstone bridge containing a transmutational sample, leading to timed disabling of a power regulator. |
doi_str_mv | 10.1109/TNS.2016.2624278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7731173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7731173</ieee_id><sourcerecordid>1850230814</sourcerecordid><originalsourceid>FETCH-LOGICAL-i484-3650a21a4c745960f2e3c2abc3ae19c236e3263291e0726672f348f9ffb518893</originalsourceid><addsrcrecordid>eNotjk1LAzEYhIMoWKt3wcuC5615852j1PpFVdAFj0sa32DKdrcm2YP_3oV6mhnmYRhCLoEuAKi9aV4_FoyCWjDFBNPmiMxASlOD1OaYzCgFU1th7Sk5y3k7RSGpnJHnJu6wvsM99l_Yl2rVoS8petdV75hjLq73WA2hapLr824srsShn9oXVzDFyXzG8l1JvRzOyUlwXcaLf52T5n7VLB_r9dvD0_J2XUdhRM2VpI6BE14LaRUNDLlnbuO5Q7CecYWcKc4sINVMKc0CFybYEDYSjLF8Tq4Ps_s0_IyYS7sdxjRdyi0YSRmnBsREXR2oiIjtPsWdS7-t1hxAc_4HZfZV9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850230814</pqid></control><display><type>article</type><title>Time-Dependent Electrical Resistance of Transmutational Material With 57Co</title><source>IEEE Electronic Library (IEL)</source><creator>Yoshimizu, Norimasa</creator><creatorcontrib>Yoshimizu, Norimasa</creatorcontrib><description>Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn causing a change in electrical resistance over time. Significant increases- nearly a factor of four- in sample resistance over time are observed. Scaling is presented to show that samples that are less than 10 % of typical background exposure could be fabricated on the scale of microelectronics, avoiding detection. Finally, an application is demonstrated of a Wheatstone bridge containing a transmutational sample, leading to timed disabling of a power regulator.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2016.2624278</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>CMOS ; Cobalt ; Cobalt isotopes ; Electrical resistance ; Electrical resistance measurement ; Electrical resistivity ; Electronics industry ; Magnetism ; Metal oxide semiconductors ; Radioactive materials ; Radioisotopes ; Resistance ; Substrates ; Time dependence ; Time measurement ; transmutation ; Voltage regulators ; Wheatstone bridges</subject><ispartof>IEEE transactions on nuclear science, 2016-12, Vol.63 (6), p.2993-2996</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7731173$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7731173$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yoshimizu, Norimasa</creatorcontrib><title>Time-Dependent Electrical Resistance of Transmutational Material With 57Co</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn causing a change in electrical resistance over time. Significant increases- nearly a factor of four- in sample resistance over time are observed. Scaling is presented to show that samples that are less than 10 % of typical background exposure could be fabricated on the scale of microelectronics, avoiding detection. Finally, an application is demonstrated of a Wheatstone bridge containing a transmutational sample, leading to timed disabling of a power regulator.</description><subject>CMOS</subject><subject>Cobalt</subject><subject>Cobalt isotopes</subject><subject>Electrical resistance</subject><subject>Electrical resistance measurement</subject><subject>Electrical resistivity</subject><subject>Electronics industry</subject><subject>Magnetism</subject><subject>Metal oxide semiconductors</subject><subject>Radioactive materials</subject><subject>Radioisotopes</subject><subject>Resistance</subject><subject>Substrates</subject><subject>Time dependence</subject><subject>Time measurement</subject><subject>transmutation</subject><subject>Voltage regulators</subject><subject>Wheatstone bridges</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjk1LAzEYhIMoWKt3wcuC5615852j1PpFVdAFj0sa32DKdrcm2YP_3oV6mhnmYRhCLoEuAKi9aV4_FoyCWjDFBNPmiMxASlOD1OaYzCgFU1th7Sk5y3k7RSGpnJHnJu6wvsM99l_Yl2rVoS8petdV75hjLq73WA2hapLr824srsShn9oXVzDFyXzG8l1JvRzOyUlwXcaLf52T5n7VLB_r9dvD0_J2XUdhRM2VpI6BE14LaRUNDLlnbuO5Q7CecYWcKc4sINVMKc0CFybYEDYSjLF8Tq4Ps_s0_IyYS7sdxjRdyi0YSRmnBsREXR2oiIjtPsWdS7-t1hxAc_4HZfZV9w</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Yoshimizu, Norimasa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201612</creationdate><title>Time-Dependent Electrical Resistance of Transmutational Material With 57Co</title><author>Yoshimizu, Norimasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i484-3650a21a4c745960f2e3c2abc3ae19c236e3263291e0726672f348f9ffb518893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CMOS</topic><topic>Cobalt</topic><topic>Cobalt isotopes</topic><topic>Electrical resistance</topic><topic>Electrical resistance measurement</topic><topic>Electrical resistivity</topic><topic>Electronics industry</topic><topic>Magnetism</topic><topic>Metal oxide semiconductors</topic><topic>Radioactive materials</topic><topic>Radioisotopes</topic><topic>Resistance</topic><topic>Substrates</topic><topic>Time dependence</topic><topic>Time measurement</topic><topic>transmutation</topic><topic>Voltage regulators</topic><topic>Wheatstone bridges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshimizu, Norimasa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshimizu, Norimasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Dependent Electrical Resistance of Transmutational Material With 57Co</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2016-12</date><risdate>2016</risdate><volume>63</volume><issue>6</issue><spage>2993</spage><epage>2996</epage><pages>2993-2996</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Transmutational material is studied as a changing electrical resistance over time. A process compatible to complementary metal oxide semiconductors is developed to deposit transmutational material. The material contains the radioisotope 57 Co which decays and causes an elemental change, in turn causing a change in electrical resistance over time. Significant increases- nearly a factor of four- in sample resistance over time are observed. Scaling is presented to show that samples that are less than 10 % of typical background exposure could be fabricated on the scale of microelectronics, avoiding detection. Finally, an application is demonstrated of a Wheatstone bridge containing a transmutational sample, leading to timed disabling of a power regulator.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2016.2624278</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2016-12, Vol.63 (6), p.2993-2996 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_ieee_primary_7731173 |
source | IEEE Electronic Library (IEL) |
subjects | CMOS Cobalt Cobalt isotopes Electrical resistance Electrical resistance measurement Electrical resistivity Electronics industry Magnetism Metal oxide semiconductors Radioactive materials Radioisotopes Resistance Substrates Time dependence Time measurement transmutation Voltage regulators Wheatstone bridges |
title | Time-Dependent Electrical Resistance of Transmutational Material With 57Co |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Dependent%20Electrical%20Resistance%20of%20Transmutational%20Material%20With%2057Co&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Yoshimizu,%20Norimasa&rft.date=2016-12&rft.volume=63&rft.issue=6&rft.spage=2993&rft.epage=2996&rft.pages=2993-2996&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2016.2624278&rft_dat=%3Cproquest_RIE%3E1850230814%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850230814&rft_id=info:pmid/&rft_ieee_id=7731173&rfr_iscdi=true |