Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes

Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2017-01, Vol.65 (1), p.121-133
Hauptverfasser: Bing Qian Lu, Nagar, Jogender, Taiwei Yue, Pantoja, Mario F., Werner, Douglas H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 121
container_title IEEE transactions on antennas and propagation
container_volume 65
creator Bing Qian Lu
Nagar, Jogender
Taiwei Yue
Pantoja, Mario F.
Werner, Douglas H.
description Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressions for the radiation properties of conducting loops have not been extended to the optical regime. This paper presents closed-form expressions for the electric fields, total radiated power, directivity, and gain for thin-wire nanoloops operating in the terahertz, infrared and optical regimes. This is accomplished by extending the formulation for PEC loops to include the effects of dispersion and loss. The expressions derived for a gold nanoloop are implemented and the results agree well with full-wave computational simulations, but with a speed increase of more than 300×. This allows the scientist or engineer to quickly prototype designs and gain a deeper understanding of the underlying physics. Moreover, through rapid numerical experimentation, these closed-form expressions made possible the discovery that broadband super-directivity occurs naturally for nanoloops of a specific size and material composition. This is an unexpected and potentially transformative result that does not occur for PEC loops. Additionally, the Appendices give useful guidelines on how to efficiently compute the required integrals.
doi_str_mv 10.1109/TAP.2016.2624150
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7728022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7728022</ieee_id><sourcerecordid>1856424220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fb06770575b902e5842e7042162dec3a8c59e222801a355ed97354ba9d17493</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08epiO223u0dCREmIEOTgrSm7s7IEtmu7JOqvtwjxNJmZ552Pl5Bbzgacs_xxOZwPgPF0AClIrtgZ6XGlsgQA-DnpMcazJIf0_ZJchbCJqcyk7JF2tHUBy2Ts_I4-fbUeQ6hdE2jlPO3WSBe2rG0XS3TuXYu-qzFQV9FX27itc22gdfMHLtHbdez_PNBJU3nrsaS2Kems7erCbukCP-odhmtyUdltwJtT7JO38dNy9JJMZ8-T0XCaFEKILqlWLNWaKa1WOQNUmQTUTAJPocRC2KxQOcbfMsatUArLXAslVzYvuZa56JP749TWu889hs5s3N43caHhmUolSAAWKXakCu9C8FiZ1tc7678NZ-bgqomumoOr5uRqlNwdJTUi_uNax0MAxC_ZvnKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856424220</pqid></control><display><type>article</type><title>Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes</title><source>IEEE Electronic Library (IEL)</source><creator>Bing Qian Lu ; Nagar, Jogender ; Taiwei Yue ; Pantoja, Mario F. ; Werner, Douglas H.</creator><creatorcontrib>Bing Qian Lu ; Nagar, Jogender ; Taiwei Yue ; Pantoja, Mario F. ; Werner, Douglas H.</creatorcontrib><description>Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressions for the radiation properties of conducting loops have not been extended to the optical regime. This paper presents closed-form expressions for the electric fields, total radiated power, directivity, and gain for thin-wire nanoloops operating in the terahertz, infrared and optical regimes. This is accomplished by extending the formulation for PEC loops to include the effects of dispersion and loss. The expressions derived for a gold nanoloop are implemented and the results agree well with full-wave computational simulations, but with a speed increase of more than 300×. This allows the scientist or engineer to quickly prototype designs and gain a deeper understanding of the underlying physics. Moreover, through rapid numerical experimentation, these closed-form expressions made possible the discovery that broadband super-directivity occurs naturally for nanoloops of a specific size and material composition. This is an unexpected and potentially transformative result that does not occur for PEC loops. Additionally, the Appendices give useful guidelines on how to efficiently compute the required integrals.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2016.2624150</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna theory ; Antennas ; Biomedical optical imaging ; Broadband ; Closed form solutions ; Conduction ; Conductors ; Directivity ; Dispersion ; Electric conductors ; Electric fields ; Exact solutions ; Experimentation ; Impedance ; Loop antennas ; Mathematical analysis ; nanotechnology ; New technology ; Optical losses ; Optical properties ; Radiation ; submillimeter wave technology</subject><ispartof>IEEE transactions on antennas and propagation, 2017-01, Vol.65 (1), p.121-133</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fb06770575b902e5842e7042162dec3a8c59e222801a355ed97354ba9d17493</citedby><cites>FETCH-LOGICAL-c333t-fb06770575b902e5842e7042162dec3a8c59e222801a355ed97354ba9d17493</cites><orcidid>0000-0003-2536-2924 ; 0000-0002-1440-8280 ; 0000-0002-9865-3266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7728022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7728022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bing Qian Lu</creatorcontrib><creatorcontrib>Nagar, Jogender</creatorcontrib><creatorcontrib>Taiwei Yue</creatorcontrib><creatorcontrib>Pantoja, Mario F.</creatorcontrib><creatorcontrib>Werner, Douglas H.</creatorcontrib><title>Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressions for the radiation properties of conducting loops have not been extended to the optical regime. This paper presents closed-form expressions for the electric fields, total radiated power, directivity, and gain for thin-wire nanoloops operating in the terahertz, infrared and optical regimes. This is accomplished by extending the formulation for PEC loops to include the effects of dispersion and loss. The expressions derived for a gold nanoloop are implemented and the results agree well with full-wave computational simulations, but with a speed increase of more than 300×. This allows the scientist or engineer to quickly prototype designs and gain a deeper understanding of the underlying physics. Moreover, through rapid numerical experimentation, these closed-form expressions made possible the discovery that broadband super-directivity occurs naturally for nanoloops of a specific size and material composition. This is an unexpected and potentially transformative result that does not occur for PEC loops. Additionally, the Appendices give useful guidelines on how to efficiently compute the required integrals.</description><subject>Antenna theory</subject><subject>Antennas</subject><subject>Biomedical optical imaging</subject><subject>Broadband</subject><subject>Closed form solutions</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Directivity</subject><subject>Dispersion</subject><subject>Electric conductors</subject><subject>Electric fields</subject><subject>Exact solutions</subject><subject>Experimentation</subject><subject>Impedance</subject><subject>Loop antennas</subject><subject>Mathematical analysis</subject><subject>nanotechnology</subject><subject>New technology</subject><subject>Optical losses</subject><subject>Optical properties</subject><subject>Radiation</subject><subject>submillimeter wave technology</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbw08epiO223u0dCREmIEOTgrSm7s7IEtmu7JOqvtwjxNJmZ552Pl5Bbzgacs_xxOZwPgPF0AClIrtgZ6XGlsgQA-DnpMcazJIf0_ZJchbCJqcyk7JF2tHUBy2Ts_I4-fbUeQ6hdE2jlPO3WSBe2rG0XS3TuXYu-qzFQV9FX27itc22gdfMHLtHbdez_PNBJU3nrsaS2Kems7erCbukCP-odhmtyUdltwJtT7JO38dNy9JJMZ8-T0XCaFEKILqlWLNWaKa1WOQNUmQTUTAJPocRC2KxQOcbfMsatUArLXAslVzYvuZa56JP749TWu889hs5s3N43caHhmUolSAAWKXakCu9C8FiZ1tc7678NZ-bgqomumoOr5uRqlNwdJTUi_uNax0MAxC_ZvnKs</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Bing Qian Lu</creator><creator>Nagar, Jogender</creator><creator>Taiwei Yue</creator><creator>Pantoja, Mario F.</creator><creator>Werner, Douglas H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2536-2924</orcidid><orcidid>https://orcid.org/0000-0002-1440-8280</orcidid><orcidid>https://orcid.org/0000-0002-9865-3266</orcidid></search><sort><creationdate>201701</creationdate><title>Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes</title><author>Bing Qian Lu ; Nagar, Jogender ; Taiwei Yue ; Pantoja, Mario F. ; Werner, Douglas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fb06770575b902e5842e7042162dec3a8c59e222801a355ed97354ba9d17493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antenna theory</topic><topic>Antennas</topic><topic>Biomedical optical imaging</topic><topic>Broadband</topic><topic>Closed form solutions</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Directivity</topic><topic>Dispersion</topic><topic>Electric conductors</topic><topic>Electric fields</topic><topic>Exact solutions</topic><topic>Experimentation</topic><topic>Impedance</topic><topic>Loop antennas</topic><topic>Mathematical analysis</topic><topic>nanotechnology</topic><topic>New technology</topic><topic>Optical losses</topic><topic>Optical properties</topic><topic>Radiation</topic><topic>submillimeter wave technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bing Qian Lu</creatorcontrib><creatorcontrib>Nagar, Jogender</creatorcontrib><creatorcontrib>Taiwei Yue</creatorcontrib><creatorcontrib>Pantoja, Mario F.</creatorcontrib><creatorcontrib>Werner, Douglas H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bing Qian Lu</au><au>Nagar, Jogender</au><au>Taiwei Yue</au><au>Pantoja, Mario F.</au><au>Werner, Douglas H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2017-01</date><risdate>2017</risdate><volume>65</volume><issue>1</issue><spage>121</spage><epage>133</epage><pages>121-133</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressions for the radiation properties of conducting loops have not been extended to the optical regime. This paper presents closed-form expressions for the electric fields, total radiated power, directivity, and gain for thin-wire nanoloops operating in the terahertz, infrared and optical regimes. This is accomplished by extending the formulation for PEC loops to include the effects of dispersion and loss. The expressions derived for a gold nanoloop are implemented and the results agree well with full-wave computational simulations, but with a speed increase of more than 300×. This allows the scientist or engineer to quickly prototype designs and gain a deeper understanding of the underlying physics. Moreover, through rapid numerical experimentation, these closed-form expressions made possible the discovery that broadband super-directivity occurs naturally for nanoloops of a specific size and material composition. This is an unexpected and potentially transformative result that does not occur for PEC loops. Additionally, the Appendices give useful guidelines on how to efficiently compute the required integrals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2016.2624150</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2536-2924</orcidid><orcidid>https://orcid.org/0000-0002-1440-8280</orcidid><orcidid>https://orcid.org/0000-0002-9865-3266</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2017-01, Vol.65 (1), p.121-133
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_7728022
source IEEE Electronic Library (IEL)
subjects Antenna theory
Antennas
Biomedical optical imaging
Broadband
Closed form solutions
Conduction
Conductors
Directivity
Dispersion
Electric conductors
Electric fields
Exact solutions
Experimentation
Impedance
Loop antennas
Mathematical analysis
nanotechnology
New technology
Optical losses
Optical properties
Radiation
submillimeter wave technology
title Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Form%20Expressions%20for%20the%20Radiation%20Properties%20of%20Nanoloops%20in%20the%20Terahertz,%20Infrared%20and%20Optical%20Regimes&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Bing%20Qian%20Lu&rft.date=2017-01&rft.volume=65&rft.issue=1&rft.spage=121&rft.epage=133&rft.pages=121-133&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2016.2624150&rft_dat=%3Cproquest_RIE%3E1856424220%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856424220&rft_id=info:pmid/&rft_ieee_id=7728022&rfr_iscdi=true