Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes
Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2017-01, Vol.65 (1), p.121-133 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1 |
container_start_page | 121 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 65 |
creator | Bing Qian Lu Nagar, Jogender Taiwei Yue Pantoja, Mario F. Werner, Douglas H. |
description | Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressions for the radiation properties of conducting loops have not been extended to the optical regime. This paper presents closed-form expressions for the electric fields, total radiated power, directivity, and gain for thin-wire nanoloops operating in the terahertz, infrared and optical regimes. This is accomplished by extending the formulation for PEC loops to include the effects of dispersion and loss. The expressions derived for a gold nanoloop are implemented and the results agree well with full-wave computational simulations, but with a speed increase of more than 300×. This allows the scientist or engineer to quickly prototype designs and gain a deeper understanding of the underlying physics. Moreover, through rapid numerical experimentation, these closed-form expressions made possible the discovery that broadband super-directivity occurs naturally for nanoloops of a specific size and material composition. This is an unexpected and potentially transformative result that does not occur for PEC loops. Additionally, the Appendices give useful guidelines on how to efficiently compute the required integrals. |
doi_str_mv | 10.1109/TAP.2016.2624150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7728022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7728022</ieee_id><sourcerecordid>1856424220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-fb06770575b902e5842e7042162dec3a8c59e222801a355ed97354ba9d17493</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08epiO223u0dCREmIEOTgrSm7s7IEtmu7JOqvtwjxNJmZ552Pl5Bbzgacs_xxOZwPgPF0AClIrtgZ6XGlsgQA-DnpMcazJIf0_ZJchbCJqcyk7JF2tHUBy2Ts_I4-fbUeQ6hdE2jlPO3WSBe2rG0XS3TuXYu-qzFQV9FX27itc22gdfMHLtHbdez_PNBJU3nrsaS2Kems7erCbukCP-odhmtyUdltwJtT7JO38dNy9JJMZ8-T0XCaFEKILqlWLNWaKa1WOQNUmQTUTAJPocRC2KxQOcbfMsatUArLXAslVzYvuZa56JP749TWu889hs5s3N43caHhmUolSAAWKXakCu9C8FiZ1tc7678NZ-bgqomumoOr5uRqlNwdJTUi_uNax0MAxC_ZvnKs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856424220</pqid></control><display><type>article</type><title>Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes</title><source>IEEE Electronic Library (IEL)</source><creator>Bing Qian Lu ; Nagar, Jogender ; Taiwei Yue ; Pantoja, Mario F. ; Werner, Douglas H.</creator><creatorcontrib>Bing Qian Lu ; Nagar, Jogender ; Taiwei Yue ; Pantoja, Mario F. ; Werner, Douglas H.</creatorcontrib><description>Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressions for the radiation properties of conducting loops have not been extended to the optical regime. This paper presents closed-form expressions for the electric fields, total radiated power, directivity, and gain for thin-wire nanoloops operating in the terahertz, infrared and optical regimes. This is accomplished by extending the formulation for PEC loops to include the effects of dispersion and loss. The expressions derived for a gold nanoloop are implemented and the results agree well with full-wave computational simulations, but with a speed increase of more than 300×. This allows the scientist or engineer to quickly prototype designs and gain a deeper understanding of the underlying physics. Moreover, through rapid numerical experimentation, these closed-form expressions made possible the discovery that broadband super-directivity occurs naturally for nanoloops of a specific size and material composition. This is an unexpected and potentially transformative result that does not occur for PEC loops. Additionally, the Appendices give useful guidelines on how to efficiently compute the required integrals.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2016.2624150</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna theory ; Antennas ; Biomedical optical imaging ; Broadband ; Closed form solutions ; Conduction ; Conductors ; Directivity ; Dispersion ; Electric conductors ; Electric fields ; Exact solutions ; Experimentation ; Impedance ; Loop antennas ; Mathematical analysis ; nanotechnology ; New technology ; Optical losses ; Optical properties ; Radiation ; submillimeter wave technology</subject><ispartof>IEEE transactions on antennas and propagation, 2017-01, Vol.65 (1), p.121-133</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-fb06770575b902e5842e7042162dec3a8c59e222801a355ed97354ba9d17493</citedby><cites>FETCH-LOGICAL-c333t-fb06770575b902e5842e7042162dec3a8c59e222801a355ed97354ba9d17493</cites><orcidid>0000-0003-2536-2924 ; 0000-0002-1440-8280 ; 0000-0002-9865-3266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7728022$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7728022$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bing Qian Lu</creatorcontrib><creatorcontrib>Nagar, Jogender</creatorcontrib><creatorcontrib>Taiwei Yue</creatorcontrib><creatorcontrib>Pantoja, Mario F.</creatorcontrib><creatorcontrib>Werner, Douglas H.</creatorcontrib><title>Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressions for the radiation properties of conducting loops have not been extended to the optical regime. This paper presents closed-form expressions for the electric fields, total radiated power, directivity, and gain for thin-wire nanoloops operating in the terahertz, infrared and optical regimes. This is accomplished by extending the formulation for PEC loops to include the effects of dispersion and loss. The expressions derived for a gold nanoloop are implemented and the results agree well with full-wave computational simulations, but with a speed increase of more than 300×. This allows the scientist or engineer to quickly prototype designs and gain a deeper understanding of the underlying physics. Moreover, through rapid numerical experimentation, these closed-form expressions made possible the discovery that broadband super-directivity occurs naturally for nanoloops of a specific size and material composition. This is an unexpected and potentially transformative result that does not occur for PEC loops. Additionally, the Appendices give useful guidelines on how to efficiently compute the required integrals.</description><subject>Antenna theory</subject><subject>Antennas</subject><subject>Biomedical optical imaging</subject><subject>Broadband</subject><subject>Closed form solutions</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Directivity</subject><subject>Dispersion</subject><subject>Electric conductors</subject><subject>Electric fields</subject><subject>Exact solutions</subject><subject>Experimentation</subject><subject>Impedance</subject><subject>Loop antennas</subject><subject>Mathematical analysis</subject><subject>nanotechnology</subject><subject>New technology</subject><subject>Optical losses</subject><subject>Optical properties</subject><subject>Radiation</subject><subject>submillimeter wave technology</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYjeTbw08epiO223u0dCREmIEOTgrSm7s7IEtmu7JOqvtwjxNJmZ552Pl5Bbzgacs_xxOZwPgPF0AClIrtgZ6XGlsgQA-DnpMcazJIf0_ZJchbCJqcyk7JF2tHUBy2Ts_I4-fbUeQ6hdE2jlPO3WSBe2rG0XS3TuXYu-qzFQV9FX27itc22gdfMHLtHbdez_PNBJU3nrsaS2Kems7erCbukCP-odhmtyUdltwJtT7JO38dNy9JJMZ8-T0XCaFEKILqlWLNWaKa1WOQNUmQTUTAJPocRC2KxQOcbfMsatUArLXAslVzYvuZa56JP749TWu889hs5s3N43caHhmUolSAAWKXakCu9C8FiZ1tc7678NZ-bgqomumoOr5uRqlNwdJTUi_uNax0MAxC_ZvnKs</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Bing Qian Lu</creator><creator>Nagar, Jogender</creator><creator>Taiwei Yue</creator><creator>Pantoja, Mario F.</creator><creator>Werner, Douglas H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2536-2924</orcidid><orcidid>https://orcid.org/0000-0002-1440-8280</orcidid><orcidid>https://orcid.org/0000-0002-9865-3266</orcidid></search><sort><creationdate>201701</creationdate><title>Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes</title><author>Bing Qian Lu ; Nagar, Jogender ; Taiwei Yue ; Pantoja, Mario F. ; Werner, Douglas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-fb06770575b902e5842e7042162dec3a8c59e222801a355ed97354ba9d17493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antenna theory</topic><topic>Antennas</topic><topic>Biomedical optical imaging</topic><topic>Broadband</topic><topic>Closed form solutions</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Directivity</topic><topic>Dispersion</topic><topic>Electric conductors</topic><topic>Electric fields</topic><topic>Exact solutions</topic><topic>Experimentation</topic><topic>Impedance</topic><topic>Loop antennas</topic><topic>Mathematical analysis</topic><topic>nanotechnology</topic><topic>New technology</topic><topic>Optical losses</topic><topic>Optical properties</topic><topic>Radiation</topic><topic>submillimeter wave technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bing Qian Lu</creatorcontrib><creatorcontrib>Nagar, Jogender</creatorcontrib><creatorcontrib>Taiwei Yue</creatorcontrib><creatorcontrib>Pantoja, Mario F.</creatorcontrib><creatorcontrib>Werner, Douglas H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bing Qian Lu</au><au>Nagar, Jogender</au><au>Taiwei Yue</au><au>Pantoja, Mario F.</au><au>Werner, Douglas H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2017-01</date><risdate>2017</risdate><volume>65</volume><issue>1</issue><spage>121</spage><epage>133</epage><pages>121-133</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Since the pioneering work of Heinrich Hertz, perfect-electric conductor (PEC) loop antennas for RF applications have been studied extensively. Meanwhile, nanoloops are promising in the optical regime for their applications in a wide range of emerging technologies. Unfortunately, analytical expressions for the radiation properties of conducting loops have not been extended to the optical regime. This paper presents closed-form expressions for the electric fields, total radiated power, directivity, and gain for thin-wire nanoloops operating in the terahertz, infrared and optical regimes. This is accomplished by extending the formulation for PEC loops to include the effects of dispersion and loss. The expressions derived for a gold nanoloop are implemented and the results agree well with full-wave computational simulations, but with a speed increase of more than 300×. This allows the scientist or engineer to quickly prototype designs and gain a deeper understanding of the underlying physics. Moreover, through rapid numerical experimentation, these closed-form expressions made possible the discovery that broadband super-directivity occurs naturally for nanoloops of a specific size and material composition. This is an unexpected and potentially transformative result that does not occur for PEC loops. Additionally, the Appendices give useful guidelines on how to efficiently compute the required integrals.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2016.2624150</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2536-2924</orcidid><orcidid>https://orcid.org/0000-0002-1440-8280</orcidid><orcidid>https://orcid.org/0000-0002-9865-3266</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2017-01, Vol.65 (1), p.121-133 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_7728022 |
source | IEEE Electronic Library (IEL) |
subjects | Antenna theory Antennas Biomedical optical imaging Broadband Closed form solutions Conduction Conductors Directivity Dispersion Electric conductors Electric fields Exact solutions Experimentation Impedance Loop antennas Mathematical analysis nanotechnology New technology Optical losses Optical properties Radiation submillimeter wave technology |
title | Closed-Form Expressions for the Radiation Properties of Nanoloops in the Terahertz, Infrared and Optical Regimes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-Form%20Expressions%20for%20the%20Radiation%20Properties%20of%20Nanoloops%20in%20the%20Terahertz,%20Infrared%20and%20Optical%20Regimes&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Bing%20Qian%20Lu&rft.date=2017-01&rft.volume=65&rft.issue=1&rft.spage=121&rft.epage=133&rft.pages=121-133&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2016.2624150&rft_dat=%3Cproquest_RIE%3E1856424220%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856424220&rft_id=info:pmid/&rft_ieee_id=7728022&rfr_iscdi=true |