Optimization of SiGe HBTs for operation at high current densities

A comprehensive investigation of the impact of Ge profile shape as well as the scaling of collector and base doping profiles on high-injection heterojunction barrier effects in SiGe HBTs has been conducted over the -73-85/spl deg/C temperature range. The onset of Kirk effect at high current densitie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 1999-07, Vol.46 (7), p.1347-1354
Hauptverfasser: Joseph, A.J., Cressler, J.D., Richey, D.M., Niu, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1354
container_issue 7
container_start_page 1347
container_title IEEE transactions on electron devices
container_volume 46
creator Joseph, A.J.
Cressler, J.D.
Richey, D.M.
Niu, G.
description A comprehensive investigation of the impact of Ge profile shape as well as the scaling of collector and base doping profiles on high-injection heterojunction barrier effects in SiGe HBTs has been conducted over the -73-85/spl deg/C temperature range. The onset of Kirk effect at high current densities is shown to expose the Si/SiGe heterojunction in the collector-base space charge region, thereby inducing a conduction band barrier which negatively impacts the collector and base currents as well as the dynamic response, leading to a premature roll-off in both /spl beta/ and f/sub T/. In light of this, careful profile optimization is critical for emerging SiGe HBT circuit applications, since they typically operate at high current densities to realize maximum performance. We first explore the experimental consequences and electrical signature of these barrier effects over the 200-358 K temperature range for a variety of Ge profiles from an advanced UHV/CVD SiGe HBT technology. We then use extensive simulations which were calibrated to measured results to explore the sensitivity of these barrier effects to both the Ge profile shape and collector profile design, and hence investigate the optimum profile design points as a function of vertical scaling.
doi_str_mv 10.1109/16.772475
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_772475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>772475</ieee_id><sourcerecordid>919918836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6fb9d9cebb6422a50f927dfb4b85e3ca68b5979f2213be7c62a6dca9979578f43</originalsourceid><addsrcrecordid>eNqF0D1PwzAQBmALgUQpDKxMnkAMKbbjz7FU0CJV6kCZI8c5U6M2CXY6wK8nVSpGmE5376MbXoSuKZlQSswDlROlGFfiBI2oECozkstTNCKE6szkOj9HFyl99KvknI3QdNV2YRe-bReaGjcev4Y54MXjOmHfRNy0EIfIdngT3jfY7WOEusMV1Cl0AdIlOvN2m-DqOMfo7flpPVtky9X8ZTZdZi7npMukL01lHJSl5IxZQbxhqvIlL7WA3FmpS2GU8YzRvATlJLOyctb0N6G05_kY3Q1_29h87iF1xS4kB9utraHZp8JQY6jWuezl7Z-SacG1IuR_qIjm3Bw-3g_QxSalCL5oY9jZ-FVQUhx6L6gsht57ezPYAAC_7hj-APWwfFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27084496</pqid></control><display><type>article</type><title>Optimization of SiGe HBTs for operation at high current densities</title><source>IEEE Electronic Library (IEL)</source><creator>Joseph, A.J. ; Cressler, J.D. ; Richey, D.M. ; Niu, G.</creator><creatorcontrib>Joseph, A.J. ; Cressler, J.D. ; Richey, D.M. ; Niu, G.</creatorcontrib><description>A comprehensive investigation of the impact of Ge profile shape as well as the scaling of collector and base doping profiles on high-injection heterojunction barrier effects in SiGe HBTs has been conducted over the -73-85/spl deg/C temperature range. The onset of Kirk effect at high current densities is shown to expose the Si/SiGe heterojunction in the collector-base space charge region, thereby inducing a conduction band barrier which negatively impacts the collector and base currents as well as the dynamic response, leading to a premature roll-off in both /spl beta/ and f/sub T/. In light of this, careful profile optimization is critical for emerging SiGe HBT circuit applications, since they typically operate at high current densities to realize maximum performance. We first explore the experimental consequences and electrical signature of these barrier effects over the 200-358 K temperature range for a variety of Ge profiles from an advanced UHV/CVD SiGe HBT technology. We then use extensive simulations which were calibrated to measured results to explore the sensitivity of these barrier effects to both the Ge profile shape and collector profile design, and hence investigate the optimum profile design points as a function of vertical scaling.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/16.772475</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accumulators ; Barriers ; Collectors ; Density ; Germanium ; Germanium alloys ; High current ; Optimization ; Silicon germanides</subject><ispartof>IEEE transactions on electron devices, 1999-07, Vol.46 (7), p.1347-1354</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6fb9d9cebb6422a50f927dfb4b85e3ca68b5979f2213be7c62a6dca9979578f43</citedby><cites>FETCH-LOGICAL-c340t-6fb9d9cebb6422a50f927dfb4b85e3ca68b5979f2213be7c62a6dca9979578f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/772475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/772475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Joseph, A.J.</creatorcontrib><creatorcontrib>Cressler, J.D.</creatorcontrib><creatorcontrib>Richey, D.M.</creatorcontrib><creatorcontrib>Niu, G.</creatorcontrib><title>Optimization of SiGe HBTs for operation at high current densities</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>A comprehensive investigation of the impact of Ge profile shape as well as the scaling of collector and base doping profiles on high-injection heterojunction barrier effects in SiGe HBTs has been conducted over the -73-85/spl deg/C temperature range. The onset of Kirk effect at high current densities is shown to expose the Si/SiGe heterojunction in the collector-base space charge region, thereby inducing a conduction band barrier which negatively impacts the collector and base currents as well as the dynamic response, leading to a premature roll-off in both /spl beta/ and f/sub T/. In light of this, careful profile optimization is critical for emerging SiGe HBT circuit applications, since they typically operate at high current densities to realize maximum performance. We first explore the experimental consequences and electrical signature of these barrier effects over the 200-358 K temperature range for a variety of Ge profiles from an advanced UHV/CVD SiGe HBT technology. We then use extensive simulations which were calibrated to measured results to explore the sensitivity of these barrier effects to both the Ge profile shape and collector profile design, and hence investigate the optimum profile design points as a function of vertical scaling.</description><subject>Accumulators</subject><subject>Barriers</subject><subject>Collectors</subject><subject>Density</subject><subject>Germanium</subject><subject>Germanium alloys</subject><subject>High current</subject><subject>Optimization</subject><subject>Silicon germanides</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0D1PwzAQBmALgUQpDKxMnkAMKbbjz7FU0CJV6kCZI8c5U6M2CXY6wK8nVSpGmE5376MbXoSuKZlQSswDlROlGFfiBI2oECozkstTNCKE6szkOj9HFyl99KvknI3QdNV2YRe-bReaGjcev4Y54MXjOmHfRNy0EIfIdngT3jfY7WOEusMV1Cl0AdIlOvN2m-DqOMfo7flpPVtky9X8ZTZdZi7npMukL01lHJSl5IxZQbxhqvIlL7WA3FmpS2GU8YzRvATlJLOyctb0N6G05_kY3Q1_29h87iF1xS4kB9utraHZp8JQY6jWuezl7Z-SacG1IuR_qIjm3Bw-3g_QxSalCL5oY9jZ-FVQUhx6L6gsht57ezPYAAC_7hj-APWwfFk</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Joseph, A.J.</creator><creator>Cressler, J.D.</creator><creator>Richey, D.M.</creator><creator>Niu, G.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990701</creationdate><title>Optimization of SiGe HBTs for operation at high current densities</title><author>Joseph, A.J. ; Cressler, J.D. ; Richey, D.M. ; Niu, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6fb9d9cebb6422a50f927dfb4b85e3ca68b5979f2213be7c62a6dca9979578f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Accumulators</topic><topic>Barriers</topic><topic>Collectors</topic><topic>Density</topic><topic>Germanium</topic><topic>Germanium alloys</topic><topic>High current</topic><topic>Optimization</topic><topic>Silicon germanides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joseph, A.J.</creatorcontrib><creatorcontrib>Cressler, J.D.</creatorcontrib><creatorcontrib>Richey, D.M.</creatorcontrib><creatorcontrib>Niu, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Joseph, A.J.</au><au>Cressler, J.D.</au><au>Richey, D.M.</au><au>Niu, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of SiGe HBTs for operation at high current densities</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>1999-07-01</date><risdate>1999</risdate><volume>46</volume><issue>7</issue><spage>1347</spage><epage>1354</epage><pages>1347-1354</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>A comprehensive investigation of the impact of Ge profile shape as well as the scaling of collector and base doping profiles on high-injection heterojunction barrier effects in SiGe HBTs has been conducted over the -73-85/spl deg/C temperature range. The onset of Kirk effect at high current densities is shown to expose the Si/SiGe heterojunction in the collector-base space charge region, thereby inducing a conduction band barrier which negatively impacts the collector and base currents as well as the dynamic response, leading to a premature roll-off in both /spl beta/ and f/sub T/. In light of this, careful profile optimization is critical for emerging SiGe HBT circuit applications, since they typically operate at high current densities to realize maximum performance. We first explore the experimental consequences and electrical signature of these barrier effects over the 200-358 K temperature range for a variety of Ge profiles from an advanced UHV/CVD SiGe HBT technology. We then use extensive simulations which were calibrated to measured results to explore the sensitivity of these barrier effects to both the Ge profile shape and collector profile design, and hence investigate the optimum profile design points as a function of vertical scaling.</abstract><pub>IEEE</pub><doi>10.1109/16.772475</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 1999-07, Vol.46 (7), p.1347-1354
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_772475
source IEEE Electronic Library (IEL)
subjects Accumulators
Barriers
Collectors
Density
Germanium
Germanium alloys
High current
Optimization
Silicon germanides
title Optimization of SiGe HBTs for operation at high current densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T22%3A20%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20SiGe%20HBTs%20for%20operation%20at%20high%20current%20densities&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Joseph,%20A.J.&rft.date=1999-07-01&rft.volume=46&rft.issue=7&rft.spage=1347&rft.epage=1354&rft.pages=1347-1354&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/16.772475&rft_dat=%3Cproquest_RIE%3E919918836%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27084496&rft_id=info:pmid/&rft_ieee_id=772475&rfr_iscdi=true