Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization

Emotion is a key element in user-generated video. However, it is difficult to understand emotions conveyed in such videos due to the complex and unstructured nature of user-generated content and the sparsity of video frames expressing emotion. In this paper, for the first time, we propose a techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on affective computing 2018-04, Vol.9 (2), p.255-270
Hauptverfasser: Baohan Xu, Yanwei Fu, Yu-Gang Jiang, Boyang Li, Sigal, Leonid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 2
container_start_page 255
container_title IEEE transactions on affective computing
container_volume 9
creator Baohan Xu
Yanwei Fu
Yu-Gang Jiang
Boyang Li
Sigal, Leonid
description Emotion is a key element in user-generated video. However, it is difficult to understand emotions conveyed in such videos due to the complex and unstructured nature of user-generated content and the sparsity of video frames expressing emotion. In this paper, for the first time, we propose a technique for transferring knowledge from heterogeneous external sources, including image and textual data, to facilitate three related tasks in understanding video emotion: emotion recognition, emotion attribution and emotion-oriented summarization. Specifically, our framework (1) learns a video encoding from an auxiliary emotional image dataset in order to improve supervised video emotion recognition, and (2) transfers knowledge from an auxiliary textual corpora for zero-shot recognition of emotion classes unseen during training. The proposed technique for knowledge transfer facilitates novel applications of emotion attribution and emotion-oriented summarization. A comprehensive set of experiments on multiple datasets demonstrate the effectiveness of our framework.
doi_str_mv 10.1109/TAFFC.2016.2622690
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_7723914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7723914</ieee_id><sourcerecordid>2174523664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-8bcd3ffeda2b7469eea56053192a7879ad4b9fa5d793bae688eeaf08ebaa05193</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOOb-AX0J-GpnfrRJ8zjG5sSBoNMnIaTtdWRsyUxaRP96222I93LH3fd7d3wQuqZkTClR96vJfD4dM0LFmAnGhCJnaEBVqhJO0uz8X32JRjFuSBecc8HkAH0soIHg1-DAtxE_Of-1hWoNeBWMizUEbB1-txV4PNv5xnqHX6D0a2f7-g5PmibYoj0MjKvwa7vbmWB_TN-5Qhe12UYYnfIQvc1nq-kiWT4_PE4ny6RkKmuSvCgrXtdQGVbIVCgAkwmScaqYkblUpkoLVZuskooXBkSed4qa5FAYQzKq-BDdHvfug_9sITZ649vgupOaUZlmjAuRdip2VJXBxxig1vtgu2e_NSW6B6kPIHUPUp9Adqabo8kCwJ9BSsYVTfkvNdJwxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174523664</pqid></control><display><type>article</type><title>Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization</title><source>IEEE Electronic Library (IEL)</source><creator>Baohan Xu ; Yanwei Fu ; Yu-Gang Jiang ; Boyang Li ; Sigal, Leonid</creator><creatorcontrib>Baohan Xu ; Yanwei Fu ; Yu-Gang Jiang ; Boyang Li ; Sigal, Leonid</creatorcontrib><description>Emotion is a key element in user-generated video. However, it is difficult to understand emotions conveyed in such videos due to the complex and unstructured nature of user-generated content and the sparsity of video frames expressing emotion. In this paper, for the first time, we propose a technique for transferring knowledge from heterogeneous external sources, including image and textual data, to facilitate three related tasks in understanding video emotion: emotion recognition, emotion attribution and emotion-oriented summarization. Specifically, our framework (1) learns a video encoding from an auxiliary emotional image dataset in order to improve supervised video emotion recognition, and (2) transfers knowledge from an auxiliary textual corpora for zero-shot recognition of emotion classes unseen during training. The proposed technique for knowledge transfer facilitates novel applications of emotion attribution and emotion-oriented summarization. A comprehensive set of experiments on multiple datasets demonstrate the effectiveness of our framework.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2016.2622690</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Emotion recognition ; Feature extraction ; Image recognition ; Knowledge management ; Knowledge transfer ; Object recognition ; Semantics ; summarization ; Training ; transfer learning ; User generated content ; Video data ; Video emotion recognition ; Visualization ; zero-shot learning</subject><ispartof>IEEE transactions on affective computing, 2018-04, Vol.9 (2), p.255-270</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-8bcd3ffeda2b7469eea56053192a7879ad4b9fa5d793bae688eeaf08ebaa05193</citedby><cites>FETCH-LOGICAL-c295t-8bcd3ffeda2b7469eea56053192a7879ad4b9fa5d793bae688eeaf08ebaa05193</cites><orcidid>0000-0002-1907-8567 ; 0000-0003-4046-1189 ; 0000-0002-6595-6893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7723914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7723914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baohan Xu</creatorcontrib><creatorcontrib>Yanwei Fu</creatorcontrib><creatorcontrib>Yu-Gang Jiang</creatorcontrib><creatorcontrib>Boyang Li</creatorcontrib><creatorcontrib>Sigal, Leonid</creatorcontrib><title>Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization</title><title>IEEE transactions on affective computing</title><addtitle>T-AFFC</addtitle><description>Emotion is a key element in user-generated video. However, it is difficult to understand emotions conveyed in such videos due to the complex and unstructured nature of user-generated content and the sparsity of video frames expressing emotion. In this paper, for the first time, we propose a technique for transferring knowledge from heterogeneous external sources, including image and textual data, to facilitate three related tasks in understanding video emotion: emotion recognition, emotion attribution and emotion-oriented summarization. Specifically, our framework (1) learns a video encoding from an auxiliary emotional image dataset in order to improve supervised video emotion recognition, and (2) transfers knowledge from an auxiliary textual corpora for zero-shot recognition of emotion classes unseen during training. The proposed technique for knowledge transfer facilitates novel applications of emotion attribution and emotion-oriented summarization. A comprehensive set of experiments on multiple datasets demonstrate the effectiveness of our framework.</description><subject>Emotion recognition</subject><subject>Feature extraction</subject><subject>Image recognition</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>Object recognition</subject><subject>Semantics</subject><subject>summarization</subject><subject>Training</subject><subject>transfer learning</subject><subject>User generated content</subject><subject>Video data</subject><subject>Video emotion recognition</subject><subject>Visualization</subject><subject>zero-shot learning</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQx4MoOOb-AX0J-GpnfrRJ8zjG5sSBoNMnIaTtdWRsyUxaRP96222I93LH3fd7d3wQuqZkTClR96vJfD4dM0LFmAnGhCJnaEBVqhJO0uz8X32JRjFuSBecc8HkAH0soIHg1-DAtxE_Of-1hWoNeBWMizUEbB1-txV4PNv5xnqHX6D0a2f7-g5PmibYoj0MjKvwa7vbmWB_TN-5Qhe12UYYnfIQvc1nq-kiWT4_PE4ny6RkKmuSvCgrXtdQGVbIVCgAkwmScaqYkblUpkoLVZuskooXBkSed4qa5FAYQzKq-BDdHvfug_9sITZ649vgupOaUZlmjAuRdip2VJXBxxig1vtgu2e_NSW6B6kPIHUPUp9Adqabo8kCwJ9BSsYVTfkvNdJwxg</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Baohan Xu</creator><creator>Yanwei Fu</creator><creator>Yu-Gang Jiang</creator><creator>Boyang Li</creator><creator>Sigal, Leonid</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1907-8567</orcidid><orcidid>https://orcid.org/0000-0003-4046-1189</orcidid><orcidid>https://orcid.org/0000-0002-6595-6893</orcidid></search><sort><creationdate>20180401</creationdate><title>Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization</title><author>Baohan Xu ; Yanwei Fu ; Yu-Gang Jiang ; Boyang Li ; Sigal, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-8bcd3ffeda2b7469eea56053192a7879ad4b9fa5d793bae688eeaf08ebaa05193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Emotion recognition</topic><topic>Feature extraction</topic><topic>Image recognition</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>Object recognition</topic><topic>Semantics</topic><topic>summarization</topic><topic>Training</topic><topic>transfer learning</topic><topic>User generated content</topic><topic>Video data</topic><topic>Video emotion recognition</topic><topic>Visualization</topic><topic>zero-shot learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baohan Xu</creatorcontrib><creatorcontrib>Yanwei Fu</creatorcontrib><creatorcontrib>Yu-Gang Jiang</creatorcontrib><creatorcontrib>Boyang Li</creatorcontrib><creatorcontrib>Sigal, Leonid</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baohan Xu</au><au>Yanwei Fu</au><au>Yu-Gang Jiang</au><au>Boyang Li</au><au>Sigal, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>T-AFFC</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>9</volume><issue>2</issue><spage>255</spage><epage>270</epage><pages>255-270</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Emotion is a key element in user-generated video. However, it is difficult to understand emotions conveyed in such videos due to the complex and unstructured nature of user-generated content and the sparsity of video frames expressing emotion. In this paper, for the first time, we propose a technique for transferring knowledge from heterogeneous external sources, including image and textual data, to facilitate three related tasks in understanding video emotion: emotion recognition, emotion attribution and emotion-oriented summarization. Specifically, our framework (1) learns a video encoding from an auxiliary emotional image dataset in order to improve supervised video emotion recognition, and (2) transfers knowledge from an auxiliary textual corpora for zero-shot recognition of emotion classes unseen during training. The proposed technique for knowledge transfer facilitates novel applications of emotion attribution and emotion-oriented summarization. A comprehensive set of experiments on multiple datasets demonstrate the effectiveness of our framework.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2016.2622690</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1907-8567</orcidid><orcidid>https://orcid.org/0000-0003-4046-1189</orcidid><orcidid>https://orcid.org/0000-0002-6595-6893</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2018-04, Vol.9 (2), p.255-270
issn 1949-3045
1949-3045
language eng
recordid cdi_ieee_primary_7723914
source IEEE Electronic Library (IEL)
subjects Emotion recognition
Feature extraction
Image recognition
Knowledge management
Knowledge transfer
Object recognition
Semantics
summarization
Training
transfer learning
User generated content
Video data
Video emotion recognition
Visualization
zero-shot learning
title Heterogeneous Knowledge Transfer in Video Emotion Recognition, Attribution and Summarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Knowledge%20Transfer%20in%20Video%20Emotion%20Recognition,%20Attribution%20and%20Summarization&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Baohan%20Xu&rft.date=2018-04-01&rft.volume=9&rft.issue=2&rft.spage=255&rft.epage=270&rft.pages=255-270&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2016.2622690&rft_dat=%3Cproquest_RIE%3E2174523664%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174523664&rft_id=info:pmid/&rft_ieee_id=7723914&rfr_iscdi=true